Free Access
Volume 56, Number 1, January-February 2001
Page(s) 5 - 16
Published online 15 April 2002
  1. Foy C.D., Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils, in: Adams F. (Ed.), Soil acidity and liming, 2nd edition, ASA, CSSA, SSSA, Madison, WI, USA, 1984, pp. 57-97. [Google Scholar]
  2. Horst W.J., The role of the apoplast in aluminium toxicity and resistance of higher plants: a review, Z. Pflanz. Bodenkunde 158 (1995) 419-428. [CrossRef] [Google Scholar]
  3. Von Uexküll H.R., Mutert E., Global extent, development and economic impact of acid soils, Plant Soil 171 (1995) 1-15. [CrossRef] [Google Scholar]
  4. Dufey J.E., Drimmer D., Lambert I., Dupont Ph., Composition of root exchange sites in acidic soil solutions, in: McMichael B.L., Persson H. (Eds), Plant roots and their environment: proceedings of an ISRR-symposium, August 21-26, 1988, Uppsala, Sweden, Elsevier, Amsterdam, The Netherlands, 1991, pp. 31-38. [Google Scholar]
  5. Vo Dinh Quang, Tang Van Hai, Tombo Kanyama E., Dufey J.E., Effets combinés de l'aluminium, du fer, et du phosphore sur l'absorption d'ions et le rendement du riz (Oryza sativa L.) en solution nutritive, Agronomie 16 (1996) 175-186. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Costa de Macedo C., Kinet J.M., Van Sint Jan V., Effects of duration and intensity of aluminium stress on growth parameters in four rice genotypes differing in aluminium sensitivity, J. Plant Nutr. 20 (1997) 181-193. [CrossRef] [Google Scholar]
  7. Bernal J.H., Clark R.B., Mineral acquisition of aluminum-tolerant and -sensitive sorghum genotypes grown with varied aluminum, Commun. Soil Sci. Plant Anal. 28 (1997) 49-62. [CrossRef] [Google Scholar]
  8. Godbold D.L., Jentschke G., Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce, Physiol. Plantarum 102 (1998) 553-560. [CrossRef] [Google Scholar]
  9. Voigt P.W., Godwin H.W., Morris D.R., Effect of four acid soils on root growth of clover seedlings using a soil-on-agar procedure, Plant Soil 205 (1999) 51-56. [CrossRef] [Google Scholar]
  10. Zhao X.J., Sucoff E., Stadelmann E.J., Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells, Plant Physiol. 83 (1987) 159-162. [CrossRef] [PubMed] [Google Scholar]
  11. Kruger E., Sucoff E., Aluminium and the hydraulic conductivity of Quercus rubra L. root systems, J. Exp. Bot. 40 (1989) 659-665. [CrossRef] [Google Scholar]
  12. Ishikawa S., Wagatsuma T., Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant species, Plant Cell Physiol. 39 (1998) 516-525. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  13. Tang Van Hai, Truong Thi Nga, Laudelout H., Effect of aluminium on the mineral nutrition of rice, Plant Soil 114 (1989) 173-185. [CrossRef] [Google Scholar]
  14. Galvez L., Clark R.B., Nitrate and ammonium uptake and solution pH changes for Al-tolerant and Al-sensitive sorghum (Sorghum bicolor) genotypes grown with and without aluminium, Plant Soil 134 (1991) 179-188. [Google Scholar]
  15. Calba H., Jaillard B., Effect of aluminium on ion uptake and H+ release by maize, New Phytol. 137 (1997) 607-616. [CrossRef] [Google Scholar]
  16. Sharrock S., Frison E., Musa production around the world - trends, varieties and regional importance, in: INIBAP (Ed.), Networking banana and plantain: INIBAP annual report 1998, International Network for the Improvement of Banana and Plantain, Montpellier, France, 1999, pp. 42-47. [Google Scholar]
  17. Rufyikiri G., Nootens D., Dufey J.E., Delvaux B., Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I. Plant growth and chemical composition. Fruit 55 (6) (2000) 367-379. [Google Scholar]
  18. Declerck S., Laloux S., Sarah J.L., Delvaux B., Application of a flowing solution culture technique to study the parasitic fitness of the nematode Radopholus similis on banana plantlets under two different nitrogen nutrient regimes, Plant Pathol. 47 (1998) 580-585. [CrossRef] [Google Scholar]
  19. SAS institute, Inc., SAS user's guide: statistics, 5th ed., SAS Inst., Cary, NC, USA, 1985. [Google Scholar]
  20. Arp P.A., Strucel I., Water uptake by black spruce seedlings from rooting media (solution, sand, peat) treated with inorganic and oxalated aluminum, Water Air Soil Poll. 44 (1989) 57-70. [CrossRef] [Google Scholar]
  21. Keltjens W.G., Magnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sites, Plant Soil 171 (1995) 141-146. [CrossRef] [Google Scholar]
  22. Wagatsuma T., Characterization of absorption sites for aluminum in the roots, Soil Sci. Plant Nutr. 29 (1983) 499-515. [Google Scholar]
  23. Wagatsuma T., Ishikawa S., Obata H., Tawaraya K., Katohda S., Plasma membrane of younger and outer cells is the primary specific site for aluminium toxicity in roots, Plant Soil 171 (1995) 105-112. [CrossRef] [Google Scholar]
  24. Tice K.R., Parker D.R., De Mason D.A., Operationally defined apoplastic and symplastic aluminum fractions in root tips of Al-intoxicated wheat, Plant Physiol. 100 (1992) 309-318. [CrossRef] [PubMed] [Google Scholar]
  25. Foy C.D., Fleming A.L., Armiger W.H., Aluminum tolerance of soybean varieties in relation to calcium nutrition, Agron. J. 61 (1969) 505-511. [CrossRef] [Google Scholar]
  26. Krizek D.K., Foy C.D., Mirecki R.M., Influence of aluminum stress on shoot and root growth of contrasting genotypes of coleus, J. Plant Nutr. 20 (1997) 1045-1060. [CrossRef] [Google Scholar]
  27. Rengel Z., Robinson D.L., Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots. I. Kinetics, Plant Physiol. 91 (1989) 1407-1413. [CrossRef] [PubMed] [Google Scholar]
  28. Huang J.W., Shaff J.E., Grunes D.L., Kochian L.V., Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars, Plant Physiol. 98 (1992) 230-237. [CrossRef] [PubMed] [Google Scholar]
  29. Durieux P.P., Jackson W.A., Kamprath E.J., Moll R.H., Inhibition of nitrate uptake by aluminium in maize, Plant Soil 151 (1993) 97-104. [CrossRef] [Google Scholar]
  30. Noble A.D., Fey M.V., Sumner M.E., Calcium-aluminum balance and the growth of soybean roots in nutrient solutions, Soil Sci. Soc. Am. J. 52 (1988) 1651-1656. [CrossRef] [Google Scholar]
  31. Mengel K., Kirkby E.A., Principles of plant nutrition, 3rd edition, International Potash Institute, Bern, Switzerland, 1982. [Google Scholar]
  32. Higinbotham N., The mineral absorption process in plants, Bot. Rev. 99 (1973) 15-69. [CrossRef] [Google Scholar]
  33. Cheeseman J.M., Hanson J.B., Energy-linked potassium influx as related to cell potential in corn roots, Plant Physiol. 64 (1979) 842-845. [CrossRef] [PubMed] [Google Scholar]
  34. Sentenac H., Grignon C., Effect of pH on orthophosphate uptake by corn roots, Plant Physiol. 77 (1985) 136-141. [CrossRef] [PubMed] [Google Scholar]
  35. Haynes R.J., Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH, Plant Soil 126 (1990) 247-264. [CrossRef] [Google Scholar]
  36. Moorby H., Nye P.H., White R.E., The influence of nitrate nutrition on H+ efflux by young rape plants (Brassica napus cv. Emerald), Plant Soil 84 (1985) 403-415. [CrossRef] [Google Scholar]
  37. Gijsman A.J., Rhizosphere pH along different root zones of douglas-fir (Pseudotsuga menziesii), as affected by source of nitrogen, in: van Beusichem M.L. (Ed.), Plant nutrition-physiology and applications, Kluwer Academic Publishers, Dordrecht., 1990, pp. 45-51. [Google Scholar]
  38. Loss S.P., Robson A.D., Ritchie G.S.P., H+/OH- excretion and nutrient uptake in upper and lower parts of lupin (Lupinus angustifolius L.) root systems, Ann. Bot. 72 (1993) 315-320. [CrossRef] [Google Scholar]
  39. Hinsinger P., Gilkes R.J., Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil, Aust. J. Soil Res. 33 (1995) 477-489. [CrossRef] [Google Scholar]