Free Access
Volume 59, Number 2, March-April 2004
Page(s) 83 - 90
Published online 15 June 2004
  1. Nowak J., Benefits of in vitro biotization of plant tissue cultures with microbial inoculants, In vitro Cell Dev. Plant. 34 (1998) 122–130. [Google Scholar]
  2. Vestberg M., Cassells A.C., Schubert A., Cordier C., Gianinazzi S., Arbuscular mycorrhizal fungi and micropropagation of high value crops, in: Gianinazzi S., Schüepp H., Barea J.M., Haselwandter K. (Eds.), Mycorrhizal Technology in Agriculture: from Genes to Bioproducts, Birkhäuser Verlag, Switzerland, 2002, pp. 223–233. [Google Scholar]
  3. Kennedy A.C., Smith K.L., Soil microbial diversity and the sustainability of agricultural soil, Plant Soil. 170 (1995) 75–86. [CrossRef] [Google Scholar]
  4. Barea J.M., Toro M., Orozco M.O., Campos E., Azcón R., The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops, Nutr. Cycl. Agroecosyst. 65 (2002) 35–42. [CrossRef] [Google Scholar]
  5. Bowen G.D., Rovira A.D., The rhizosphere and its management to improve plant growth, Adv. Agron. 66 (1999) 1–102. [CrossRef] [Google Scholar]
  6. Hiltner L., Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache, Arb. Dtsch. Landwirtsch. Ges. 98 (1904) 59–78. [Google Scholar]
  7. Lynch J.M., The rhizosphere, John Wiley, New York, USA, 1990. [Google Scholar]
  8. Jeffries P., Barea J.M., Arbuscular mycorrhiza – a key component of sustainable plant-soil ecosystems, in: Hock B. (Ed.), The Mycota, IX Fungal Associations Springer-Verlag, Berlin, Heidelberg, 2001, pp. 95–113. [Google Scholar]
  9. Kloepper J.W., Schroth M.N., Plant growth-promoting rhizobacteria on radishes, in: Angers J. (Ed.), Proceedings of the 4th International Conference on Plant pathogenic Bacteria, Vol. 2, Station de pathologie végétale et phytobactériologie, INRA, Tours, France, 1978, pp. 879–882. [Google Scholar]
  10. Burr T.J., Schroth M.N., Suslow T.V., Increased potato yields by treatments of seed pieces with specific strains of Pseudomonas fluorescens and P. putida, Phytopathol. 68 (1978) 1377–1383. [CrossRef] [Google Scholar]
  11. Anderson A.J., Guerra D., Responses of bean to root colonization with Pseudomonas putida in hydroponic system, Phytopathol. 75 (1985) 992–995. [CrossRef] [Google Scholar]
  12. Polonenko D.R., Scher F.M., Kloepper J.W., Singleton C.A., Laliberté M., Zaleska I., Effects of root colonizing bacteria on inoculation of soybean roots by Bradyrhizobium japonicum, Can. J. Microbiol. 33 (1987) 498–503. [CrossRef] [Google Scholar]
  13. Caesar A.J., Burr T.J., Growth promotion of apple seedlings and rootstocks by specific strains of bacteria, Phytopathology 77 (1987) 1583–1588. [CrossRef] [Google Scholar]
  14. Gardner J.M., Chandler J.L., Feldman A.W., Growth promotion and inhibition by antibiotic-producing fluorescent Pseudomonads on Citrus roots, Plant Soil 77 (1984) 103–113. [CrossRef] [Google Scholar]
  15. Dobbelaere S., Croonenborghs A., Thys A., Vande Browk A., Vanderleyden J., Phytostimulatory effect of Azospirillum brasilense strains and auxins on wheat, Plant Soil 212 (1999) 155–164. [Google Scholar]
  16. Ompal S., Panwar J.D.S., Effect of nitrogen fixing and phosphorus solubilizing bacteria on nutrient uptake and yield of wheat, Indian J. Plant Physiol. 2 (1997) 211–213. [Google Scholar]
  17. Kloepper J.W., Plant growth-promoting rhizobacteria as biological control agents, in: Metting F.B., Dekker M. (Eds.), Soil microbial ecology, applications in agriculture, forestry and environmental management, Dekker M., Inc., New York, USA, 1992, pp. 255–274. [Google Scholar]
  18. Carletti S., Use of plant growth-promoting rhizobacteria in plant micropropagation, Auburn University Web Site, Available:, 2000. [Google Scholar]
  19. Murashige T., Skoog F., A revised medium for rapid growth and bioassays with tobacco tissues culture, Physiol. Plantarum 15 (1962) 473–497. [CrossRef] [Google Scholar]
  20. Munter R.C., Grande R.A., Plant tissue and soil extract analysis by ICP-atomic emission spectrometry, in: Barnes R.M. (Ed.), Developments in Atomic Plasma Spectrochemical Analysis, Heyden & Son, Ltd., London, UK, 1981, pp. 653–672. [Google Scholar]
  21. Forlani G., Pastorelli R., Branzoni M., Favilli F., Root colonization efficiency, plant growth promoting activity and potentially related properties in plant associated bacteria, J. Genet. Breed. 49 (1995) 343–351. [Google Scholar]
  22. El Sayed S.A.M., Influence of Rhizobium and phosphate solubilizing bacteria on nutrient uptake and yield of lentil in the New Valley (Egypt), Egypt. J. Soil Sci. 39 (1999) 175–186. [Google Scholar]
  23. Egamberdiyeba D., Juraeva D., Gafurova L., Hoflich G., Van Santen E., Promotion of plant growth of maize by plant growth promotion bacteria in different temperatures and soils, in: Proceedings of 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Auburn, Alabama, USA, 2002, pp. 239–244. [Google Scholar]
  24. Leinhos V., Bergmann H., Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. II. Root growth promotion and nutrient accumulation in maize (Zea mays L.) by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas strains and by exogenously applied IAA under different water supply conditions, Angew. Bot. 69 (1995) 37–41. [Google Scholar]
  25. Lippmann B., Leinhos V., Bergmann H., Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. I. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously, Angew. Bot. 69 (1995) 31–36. [Google Scholar]
  26. Sweenen R., De Langhe E., Jansen J., Decoene D., Study of the root development of some Musa cultivars under hydroponics, Fruits 41 (1986) 515–524. [Google Scholar]
  27. Blomme G., The interdependence of root and shoot development in banana (Musa spp.) under field conditions and the influence of different biophysical factors on this relationship, Kathol. Univ., thesis, Leuven, Belgium, 2000, 183 p. [Google Scholar]
  28. Habe M.H., Uesugi C.H., Metodo in vitro para avaliar a capacidade colonizadora de bacterias em raizes de tomateiro, Fitopatol. Bras. 25 (2000) 657–660. [Google Scholar]
  29. Phillips D.A., Streit W.R., Volpin H., Palumbo J.D., Joseph C.M., Sande E.S., De Bruijn F.J., Gresshoff P.M., Plant regulation of bacterial root colonization, in: Biology of plant-microbe interactions, Proceedings of the 8th International Symposium, Knoxville, Tennessee, USA, 1996, pp. 481–486. [Google Scholar]
  30. Rengel Z., Ross G., Hirsch P., Plant genotype and micronutrient status influence colonization of wheat roots by soil bacteria, J. Plant Nutr. 21 (1998) 99–113. [CrossRef] [Google Scholar]
  31. Jain R.C., Shinde D., Tiwari R.J., Nema D.P., Effect of microphoos seed treatment in lentil, Lens Newsl. 23 (1996) 27–27. [Google Scholar]
  32. Awad A.M., Hegazi H.H., Effects of water regime, mineral and bio-fertigation on potato yield and chemical quality, Alex. J. Agric. Res. 47 (2002) 153–168. [Google Scholar]
  33. Rooge R.B., Patil V.C., Ravikishan P., Effect of phosphorus application with phosphate solubilizing organisms on the yield, quality and P-uptake of soybean, Legume Res. 21 (1998) 85–90. [Google Scholar]
  34. Monier C., Bossis E., Chabanet L., Samson R., Different bacteria can enhance the micropropagation response of Cotoneaster lacteus (Rosaceae), J. Appl. Microbiol. 85 (1998) 1047–1055. [CrossRef] [Google Scholar]
  35. Kloepper J.W., Zablotowicz R.M., Tipping B., Lifshitz R., Plant growth promotion mediated by bacterial rhizosphere colonizers, in: Keister D.L., Cregan P.B. (Eds.), The rhizosphere and plant growth, Kluwer academic Publ., Dordrecht, Deutschland, 1991, pp. 315–326. [Google Scholar]