Free Access
Issue
Fruits
Volume 59, Number 3, May-June 2004
Page(s) 181 - 190
DOI https://doi.org/10.1051/fruits:2004017
Published online 15 July 2004
  1. Fimiani P., Mediterranean region, in: Robinson A.S., Hooper G. (Eds.), Fruit flies: their biology, natural enemies and control, vol. A (World crop pests; 3A), Elsevier Sci. Pub., Amsterdam, Netherlands, 1989. [Google Scholar]
  2. Hagen K.S., William W.W., Tassan R.L., Mediterranean fruit fly: the worst may be yet to come, Calif. Agric. 35 (1981) 5–7. [Google Scholar]
  3. Fletcher B.S., Life history strategies of thephritid fruit flies, in: Robinson A.S., Hooper G. (Eds.), Fruit flies: their biology, natural enemies and control, vol. A (World crop pests; 3A), Elsevier Sci. Pub., Amsterdam, Netherlands, 1989. [Google Scholar]
  4. Meixner M.D., McPheron B.A., Silva J.G., Gasparich G.E., Sheppard W.S., The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability, Mol. Ecol. 11 (2002) 891–899. [CrossRef] [PubMed] [Google Scholar]
  5. Anonymous, Fruit fly pests: a world assessment of their biology and management, McPheron B.A., Steck G.J. (Eds.), St. Lucie Press, Delray Beach, USA, 1996. [Google Scholar]
  6. Menken S.B.J., Ulenberg S.A., Biochemical characters in agricultural entomology, Agric. Zool. Rev. 2 (1987) 305–360. [Google Scholar]
  7. Anonymous, Electrophoretic studies on agricultural pests, Loxdale H.D., Hollander J.D. (Eds.), Syst. Ass., Spec. Vol., Clarendon Press, Oxford, UK, 1989. [Google Scholar]
  8. Milani R., Gasperi G., Malacrida A.R., Biochemical genetics (of Ceratitis capitata), in: Robinson A.S., Hooper G. (Eds.), Fruit flies: their biology, natural enemies and control, vol. A (World crop pests; 3A), Elsevier Sci. Pub., Amsterdam, Netherlands, 1989. [Google Scholar]
  9. Haymer D.S., He M., McInnis D.O., Genetic marker analysis of spatial and temporal relationships among existing populations and new infestations of the Mediterranean fruit fly (Ceratitis capitata), Heredity 79 (1997) 302–309. [CrossRef] [Google Scholar]
  10. Malacrida A.R., Guglielmino C.R., Gasperi G., Baruffi L., Milani R., Spatial and temporal differentiation in colonizing populations of Ceratitis capitata, Heredity 69 (1992) 101–111. [CrossRef] [Google Scholar]
  11. Malacrida A.R., Marinoni F., Torti C., Gomulski L.M., Sebastian F., Bonvicini C., Gasperi G., Guglielmino C.R., Genetic aspects of the worldwide colonization process of Ceratitis capitata, J. Hered. 89 (1998) 501–507. [CrossRef] [PubMed] [Google Scholar]
  12. Sheppard W.S., Steck G.J., McPheron B.A., Geographic populations of the medfly may be differentiated by mitochondrial DNA variation, Experientia 48 (1992) 1010–1013. [CrossRef] [Google Scholar]
  13. Gasparich G.E., Silva J.G., Han H.-Y., McPheron B.A., Steck G.J., Sheppard W.S., Population genetic structure of Mediterranean fruit fly (Diptera: Tephritidae) and implications for worldwide colonization patterns, Ann. Entomol. Soc. Am. 90 (1997) 790–797. [Google Scholar]
  14. Roda P., Callejas C., Reyes A., Ochando M.D., Caracterización genética en Ceratitis capitata asociada a fruto hospedador. I. Análisis isoenzimatico, Bol. Sanit. Veg. Plagas 22 (1996) 28–36. [Google Scholar]
  15. Reyes A., Ochando M.D., Use of molecular markers for detecting the geographical origin of Ceratitis capitata (Diptera: Tephritidae) populations, Ann. Entomol. Soc. Am. 91 (1998) 222–227. [Google Scholar]
  16. Davies N., Villablanca F.X., Roderick G.K., Bioinvasions of the Medfly Ceratitis capitata: source estimation using DNA sequences at multiple intron loci, Genetics 153 (1999) 351–360. [PubMed] [Google Scholar]
  17. He M., Haymer D.S., Genetic relationships of populations and the origins of new infestations of the Mediterranean fruit fly, Mol. Ecol. 8 (1999) 1247–1257. [CrossRef] [PubMed] [Google Scholar]
  18. Bonizzoni M., Zheng L., Guglielmino C.R., Haymer D.S., Gasperi G., Gomulski L.M., Malacrida A.R., Microsatellite analysis of medfly bioinfestations in California, Mol. Ecol. 10 (2001) 2515–2524. [CrossRef] [PubMed] [Google Scholar]
  19. Reyes A., Ochando M.D., A study of gene-enzyme variability in three Spanish populations of Ceratitis capitata, Int. Organ. Biol. Integr. Control Noxious Anim. Plants / West Paleartic Reg. Sect. (IOBC/wprs) Bull. 17 (1994) 151–160. [Google Scholar]
  20. Ochando M.D., Reyes A., Callejas C., Genetic structure of Ceratitis capitata species: within and between populations variability, IOBC/wprs Bull. (in press). [Google Scholar]
  21. Ayala F.J., Powell J.R., Tracey M.L., Mourao C.A., Perez-Salas, S., Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni, Genetics 70 (1972) 113–139. [PubMed] [Google Scholar]
  22. Poulik M. D., Stach gel electrophoresis in a discontinuous system of buffers, Nature 180 (1957) 1477–1479. [CrossRef] [PubMed] [Google Scholar]
  23. Nei M., Genetic distance between populations, Am. Nat. 106 (1972) 283–292. [Google Scholar]
  24. Wright S., Evolution and the genetics of populations, vol. 4, Variability within and among natural populations, The Univ. of Chicago Press, Chicago, USA, 1978. [Google Scholar]
  25. Singh R.S., Rhomberg L.R., A comprehensive study of genetic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic differentiation, Genetics, 117 (1987) 255–271. [Google Scholar]
  26. Powell J.P., Genetic polymorphisms in varied environments, Science 174 (1971) 1035–1036. [CrossRef] [PubMed] [Google Scholar]
  27. Gillespie J.H., Langley C.H., A general model to account for enzyme variation in natural populations, Genetics 76 (1974) 837–848. [PubMed] [Google Scholar]
  28. Yong H.S., Allozyme variation in the melon fly Dacus cucurbitae (Insecta: Diptera: Tephritidae) from peninsular Malaysia, Comp. Biochem. Phys. B 102 (1992) 367–370. [CrossRef] [Google Scholar]
  29. Ochando M.D., Reyes A., Genetic population structure in olive fly Bactrocera oleae (Gmelin): gene flow and patterns of geographic differentiation, J. Appl. Entomol. 124 (2000) 177–183. [CrossRef] [Google Scholar]
  30. McPheron B.A., Jorgensen C.D., Berlocher S.H., Low genetic variability in Utah cherry-infesting population of the apple maggot, Rhagoletis pomonella, Entomol. Exp. Appl. 46 (1988) 155–160. [Google Scholar]
  31. Huettel M.D., Fuerst P.A., Maruyama T., Chakraborty R., Genetic effects of multiple population bottlenecks in the Mediterranean fruit fly (Ceratitis capitata), Genetics 94 (1980) 47. [Google Scholar]
  32. Loukas M., Population genetic studies of fruit flies of economic importance, especially medfly and olive fruit fly, using electrophoretic methods, in: Electrophoretic studies on agricultural pests, Loxdale H.D., Hollander J.D. (Eds.), Syst. Ass., Spec. Vol., Clarendon Press, Oxford, UK, 1989. [Google Scholar]
  33. Baruffi L., Damiani G., Guglielmino C.R., Bandi C., Malacrida A.R., Gasperi G., Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data, Heredity 74 (1995) 425–437. [CrossRef] [PubMed] [Google Scholar]
  34. Marinkovic D., Tucic N., Moya A., Ayala F.J., Genetic diversity and linkage disequilibrium in Drosophila melanogaster with different rates of development, Genetics 117 (1987) 513–520. [PubMed] [Google Scholar]