Free Access
Issue
Fruits
Volume 59, Number 5, September-October 2004
Page(s) 325 - 337
DOI https://doi.org/10.1051/fruits:2004031
Published online 15 December 2004
  1. Furr J.R., Ream C.L., Breeding and testing rootstocks for salt tolerance, in: Chapman H. (Ed.), Proc. First Int. Citrus Symp., Vol. 1, Univ. California, Riverside, USA, 1969, pp. 373–380. [Google Scholar]
  2. Syvertsen J.P., Yelenosky G., Salinity can enhance freeze tolerance of Citrus rootstock seedling by modifying growth, water relations, and mineral nutrition, J. Am. Soc. Hortic. Sci. 113 (1988) 889–893. [Google Scholar]
  3. Sykes S.R., The inheritance of salt exclusion in woody perennial fruit species, Plant Soil 146 (1992) 123–129. [CrossRef] [Google Scholar]
  4. Rains D.W., Developing salt tolerance, California Agriculture, Special issue: Genetic engineering of plants, 36 (1982) 30–51. [Google Scholar]
  5. Beloualy N., Bouharmont J., NaCl-tolerant plant of Poncirus trifoliata regenerated from tolerant cell lines, Theor. Appl. Genet. 83 (1992) 509–514. [PubMed] [Google Scholar]
  6. Haouala F., Hannachi C., Zid E., Exploitation de la variabilité somaclonale pour la recherche d’œillets tolérants à la salinité, Tropicultura 21 (2003) 16–21. [Google Scholar]
  7. Stavarek S.J., Rains D.W., The development of tolerance to mineral stress, HortScience 19 (1984) 377–382. [Google Scholar]
  8. Watad A.A., Reinhold L., Lerner H., Comparison between a stable NaCl-selected Nicotiana cell line and the wild type, Plant Physiol. 73 (1983) 624–629. [CrossRef] [PubMed] [Google Scholar]
  9. Ben-Hayyim G., Kochba J., Aspect of salt tolerance in a NaCl-selected stable cell line of Citrus sinensis, Plant Physiol. 72 (1983) 685–690. [CrossRef] [PubMed] [Google Scholar]
  10. Ben Hayyim G., Spiegel-Roy P., Neumann H., Relation between ion accumulation of salt-sensitive and isolated stable salt-tolerant cell lines of Citrus aurantium, Plant Physiol. 78 (1985) 144–148. [CrossRef] [PubMed] [Google Scholar]
  11. Bouharmont J., Beloualy N., Van-Sint-Jan V., Improvement of salt tolerance by in vitro selection at the cellular level, in: Lieth H., Al Masoom A.A. (Eds.), Towards the rational use of high salinity tolerant plants, Proc. ASWAS Conf, 8–15 December, 1990, Al Ain, United Arab Emirates, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1993, pp. 83–88. [Google Scholar]
  12. Piqueras A., Hernandez J.A., Olmos E., Hellin E., Sevilla F., Changes in antioxydant enzymes and organic solutes associated with adaptation of Citrus cells to salt stress, Plant Cell Tiss. Org. 45 (1996) 53–60. [CrossRef] [Google Scholar]
  13. Ben-Hayyim G., Kafkafi U., Ganmore-Neumann R., Role of internal potassium in maintaining growth of cultured Citrus cells on increasing NaCl and CaCl2 concentrations, Plant Physiol. 85 (1987) 434–439. [CrossRef] [PubMed] [Google Scholar]
  14. Murashige T., Tucker D.P.H., Growth factor requirements of Citrus tissue culture, in: Chapman H. (Ed.), Proc. First Int. Citrus Symp., Vol. 3, Univ. California, Riverside, USA, 1969, pp. 1155–1161. [Google Scholar]
  15. Dreir W., Goring M., Der einluss hoher Salzkonzentrationen auf verschieden physiologische Parameter von Maiswurzeln, Win Z. der Hu Berlin, Nath. Naturwiss. R. 23 (1974) 641–644. [Google Scholar]
  16. Ashwell G., Colorimetric analysis of sugars, in: Golowick S.P., Kaplan N.O. (Eds.), Methods in enzymology, VIII, Acad. Press Inc. Publ., New York, USA, 1957, pp. 84–85. [Google Scholar]
  17. Novozamsky I., Houba V.J.G., van der Lee J.J., van Eck R., Mignorance M.D., A convenient wet digestion procedure for multi-element analysis of plant materials, Commun. Soil Sci. Plant Anal. 24 (19–20) (1993) 2595–2605. [CrossRef] [Google Scholar]
  18. Meins R., Heritable variation in plant cell culture, Annu. Rev. Plant. Physiol. 34 (1983) 27–46. [Google Scholar]
  19. Winicov I., New molecular approaches to improving salt tolerance in crop plants, Ann. Bot. 82 (1998) 703–710. [CrossRef] [Google Scholar]
  20. Maliga P., Isolation and characterization of mutants in plant cell culture, Annu. Rev. Plant Physiol. 35 (1984) 519–542. [CrossRef] [Google Scholar]
  21. Rochdi A., El Yacoubi H., Rachidai A., Comportement vis-à-vis de la salinité des cals des porte-greffes d’agrumes Citrus aurantium, citrange Troyer et Poncirus trifoliata, évaluation de critères certifiant la réponse des agrumes au stress salin, Agronomie 23 (2003) 643–649. [CrossRef] [EDP Sciences] [Google Scholar]
  22. Cramer G.R., Lauchli A., Polito V.S., Displacement of Ca2+ by Na+ from the plasmalema of root cells. A primary response to salt stress? Plant Physiol. 79 (1985) 207–211. [CrossRef] [PubMed] [Google Scholar]
  23. Marshner H., Mineral nutrition of higher plants, Acad. Press, London, UK, 1995. [Google Scholar]
  24. Piri K., Anceau C., El Jaafari S., Lepoivre P., Semal J., Sélection in vitro de plantes androgénétiques de blé tendre résistantes à la salinité, in: Aupelf-Uref (Ed.), Quel avenir pour l’amélioration des plantes ? John Libbey Eurotext, Paris, France, 1994, pp. 311–320. [Google Scholar]
  25. Rachidai A., Driouich A., Ouassou A., Ismaili M., Interaction entre K+ et Na+ en conditions de stress salin chez deux variétés à résistances différentes de blé dur (T. durum), Rev. Rés. Amélior. Prod. Agric. Milieu Aride 6 (1994) 229–239. [Google Scholar]
  26. Erdei L., Kuiper P.J.C., The effect of salinity on growth cation content, Na+-uptake and translocation in salt-sensitive and salt-tolerant Plantago spp., Physiol. Plantarum 47 (1979) 95–99. [CrossRef] [Google Scholar]
  27. Binzel M.L., Hess F.D., Bressan R.A., Hasegawa P.M., Intracellular compartmentation of ions in salt adapted tobacco cells, Plant Physiol. 86 (1988) 607–614. [CrossRef] [PubMed] [Google Scholar]
  28. Maathuis F.J.M., Amtmann A., K+ nutrition and Na+ toxicity, the basis of cellular K/Na ratios, Ann. Bot. 84 (1999) 123–133. [CrossRef] [Google Scholar]
  29. Liu T., Van Staden J., Selection and characterization of sodium chloride-tolerant callus of Glycine max (L.) Merr. cv. Acme, Plant Growth Regul. 31 (1999) 195–207. [CrossRef] [Google Scholar]
  30. Patnaik J., Debata B.K., In vitro selection of NaCl tolerant callus lines of Cymbopogon martinii (Roxb.) Wats., Plant Sci. 124 (1997) 203–210. [CrossRef] [Google Scholar]
  31. Elavumoottil O.C., Martin J.P., Moreno M.L., Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L., Biol. Plantarum 46 (2003) 7–12. [CrossRef] [Google Scholar]
  32. Stewart C.R., Proline accumulation: Biochemical aspect, in: Paleg L.G., Aspinal D. (Eds.), The physiology and biochemistry of drought resistance in plants, Acad. Press, New York, USA, 1981, pp. 243–259. [Google Scholar]
  33. Hsiao T.C., Plant responses to water stress, Annu. Rev. Plant. Physiol. 24 (1973) 519–570. [CrossRef] [Google Scholar]