Free Access
Volume 61, Number 3, May-June 2006
Page(s) 171 - 184
Published online 30 June 2006
  1. Balls A.K., Kevorkian A.G., Arana F.E., Process for curing vanilla beans, United States Patent Office, No. 2274120, USA, 1942, 1 p. [Google Scholar]
  2. Ansaldi G., Gil G., Le Petit J., Procédé d’obtention d’arôme naturel de vanille par traitement des gousses de vanille verte et arôme obtenu, Brevet, INPI, No. 2634979, France, 1988, 7 p. [Google Scholar]
  3. Rabak F., The effect of curing on the aromatic constituents of vanilla beans, J. Ind. Eng. Chem. 8 (1916) 815–821. [CrossRef] [Google Scholar]
  4. Balls A.K., Arana F.E., The curing of vanilla, J. Ind. Eng. Chem. 33 (1941) 1073–1075. [CrossRef] [Google Scholar]
  5. Jones M.A., Vicente G.C., Criteria for testing vanilla in relation to killing and curing methods, J. Agric. Res. 78 (1949) 425–434. [Google Scholar]
  6. Jones M.A., Vicente G.C., Inactivation and vacuum infiltration of vanilla enzyme systems, J. Agric. Res. 78 (1949) 435–444. [Google Scholar]
  7. Broderick J.J., A preliminary investigation of the quick curing of vanilla beans, Food Technol. 10 (1956) 188–189. [Google Scholar]
  8. Ranadive A.S., Szkutnica K., Guerrera J.G., Frenkel C., Vanillin biosynthesis in vanilla beans, in: Proc. 9th Int. Congr. Essent. Oils, Singapore, Malaysia, 1983, pp. 147–154. [Google Scholar]
  9. Hanum T., Changes in vanillin and activity of Formula -glucosidase and oxidases during post harvest processing of vanilla bean (Vanilla planifolia), Bull. Teknol. Ind. Pengan VIII (1997) 46–52. [Google Scholar]
  10. Jiang M., Pu F., Xie W.-S., Hu Y.Q., Li Y., Activity of three enzymes in Vanilla capsule, Acta Bot. Yunnanica 22 (2000) 187–190. [Google Scholar]
  11. Dignum M.J.W., Kerler J., Verpoorte R., Formula -glucosidase and peroxydase stability in crude enzyme extracts from green beans of Vanilla planifolia Andrews, Phytochem. Anal. 12 (2001) 174–179. [CrossRef] [PubMed] [Google Scholar]
  12. Dignum M.J.W., Kerler J., Verpoorte R., Vanilla curing under laboratory conditions, Food Chem. 79 (2002) 165–171. [CrossRef] [Google Scholar]
  13. Dignum M., Biochemistry of the processing of vanilla beans, Univ. Leiden, Thesis, Leiden, Nederland, 2002, 103 p. [Google Scholar]
  14. Havkin-Frenkel D., French J.C., Pak F., Frenkel C., Inside vanilla: Vanilla planifolia’s botany, curing options and future market prospects, Perfum. Flavor. 30 (2005) 36–55. [Google Scholar]
  15. Pérez-Silva A., Odoux E., Brat P., Ribeyre F., Rodriguez-Jimenes G., Robles-Olvera V., García-Alvarado M. A., Günata Z., GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans, Food Chem. (2006) 99 (4) 728–735. [Google Scholar]
  16. Röling W.F.M., Kerler J., Braster M., Apriyantono A., Stam H., Van Verseveld H.W., Microorganisms with a taste for vanilla: microbial ecology of traditional Indonesian vanilla curing, Appl. Environ. Microbiol. 67 (2001) 1995-2003. [CrossRef] [PubMed] [Google Scholar]
  17. Lecomte H., Sur la formation du parfum de la vanille, CR Séances Acad. Sci. (Paris) T133 (1901) 745–748. [Google Scholar]
  18. Lecomte H., Formation de la vanilline dans la vanille, Agric. Prat. Pays Chauds 13 (1913) 3–14. [Google Scholar]
  19. Goris A., Sur la composition chimique des fruits verts de vanille et le mode de formation du parfum de la vanille, CR Acad. Sci. 179 (1924) 70–72. [Google Scholar]
  20. Goris A., Formation du parfum de la vanille, Ind. Parfum. 2 (1947) 4–12. [Google Scholar]
  21. Janot M.M., Formation du parfum de la vanille, in: Bouriquet G. (Eds.), Le vanillier et la vanille dans le monde, Paul Lechevalier, Paris, France, 1954. [Google Scholar]
  22. Leong G., Archavlis A., Derbesy M., Research on the glucosides fraction of the vanilla bean, J. Essent. Oil Res. 1 (1989) 33–41. [Google Scholar]
  23. Leong G., Uzio R., Derbesy M., Synthesis, identification and determination of glucosides present in green vanilla beans (Vanilla fragrans Andrews), Flavour Fragranc. J. 4 (1989) 163–167. [CrossRef] [Google Scholar]
  24. Leong G., Contribution à l’étude des hétérosides des gousses de vanille vertes, Univ. Marseille III, Thèse, Marseille, France, 1991, 153 p. [Google Scholar]
  25. Kanisawa T., Tokoro K., Kawahara S., Flavour development in the beans of Vanilla planifolia, in: Kurihara K., Suzuki N., Ogawa H. (Eds.), Proc. Int. Symp., Tokyo, Japan, 1994, pp. 268–270. [Google Scholar]
  26. Kanisawa T., Flavor development in vanilla beans, Kouryou 180 (1993) 113–123. [Google Scholar]
  27. Dignum M.J.W., Van Der Heijden R., Kerler J., Winkel C., Verpoorte R., Identification of glucosides in green beans of Vanilla planifolia Andrews and kinetics of vanilla Formula -glucosidase, Food Chem. 85 (2004) 199–205. [CrossRef] [Google Scholar]
  28. Sagrero-Nieves L., Schwartz S.J., Phenolic content of Vanilla planifolia as affected by harvest period, J. Food Compos. Analys. 1 (1988) 362–365. [CrossRef] [Google Scholar]
  29. Brodelius P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. V. High performance liquid chromatographic analysis of phenolic glycosides and aglycones in developing fruits, Phytochem. Anal. 5 (1994) 27–31. [CrossRef] [Google Scholar]
  30. Havkin-Frenkel D., Podstolki A., Witkowska E., Molecki P., Mikolajczyk P., Vanillin biosynthetic pathways: an overview, in: Fu T.J., Singh G., Curtis W.R. (Eds.), Plant cell and tissue culture for the production of food ingredients, Kluwer Acad./Plenum Publ., New York, USA, 1999. [Google Scholar]
  31. Arana F.E., Action of a Formula -glucosidase in the curing of vanilla, Food Res. 8 (1943) 343–351. [Google Scholar]
  32. Brunerie P.M., Procédé d’obtention d’arôme naturel de vanille par traitement enzymatique des gousses de vanille verte et arôme obtenu, Int. Pat. Appl., No. PCT/FR92/00837, France, 1993, 11 p. [Google Scholar]
  33. Odoux E., Changes in vanillin and glucovanillin concentrations during the various stages of the process traditionally used for curing Vanilla fragrans beans in Réunion, Fruits 55 (2000) 119–125. [Google Scholar]
  34. Zenk M.H., Biosynthese of vanillin in Vanilla planifolia Andr., Z. Pflanzenphysiol. 53 (1965) 404–414. [Google Scholar]
  35. Funk C., Brodelius P.E., Influence of growth regulators and an elicitor on phenylpropanoid metabolism in suspension cultures of Vanilla planifolia, Phytochem. 29 (1990) 845–848. [CrossRef] [Google Scholar]
  36. Funk C., Brodelius P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. II. Effects of precursor feeding and metabolic inhibitors, Plant Physiol. 94 (1990) 95–101. [CrossRef] [PubMed] [Google Scholar]
  37. Funk C., Brodelius P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. III. Conversion of 4-methoxycinnamic acids into 4-hydroxybenzoic acids, Plant Physiol. 94 (1990) 102–108. [CrossRef] [PubMed] [Google Scholar]
  38. Funk C., Brodelius P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. IV. Induction of vanillic acid formation, Plant Physiol. 99 (1992) 256–262. [CrossRef] [PubMed] [Google Scholar]
  39. Funk C., Brodelius P.E., Vanilla planifolia Andrews: in vitro biosynthesis of vanillin and other phenylpropanoid derivatives, in: Bajaj Y.P.S. (Ed.), Biotechnology in agriculture and forestry, Springer Verlag, Berlin-Heidelberg, Germany, 1994. [Google Scholar]
  40. Knorr D., Caster C., Dörneburg H., Dorn R., Gräf S., Havkin-Frenkel D., Podstolski A., Werrman U., Biosynthesis and yield improvement of food ingredients from plant cell and tissue cultures, Food Technol. (1993) 57–63. [Google Scholar]
  41. Havkin-Frenkel D., Podstolski A., Knorr D., Effect of light on vanillin precursors formation by in vitro cultures of Vanilla planifolia, Plant Cell Tiss. Org. 45 (1996) 133–136. [CrossRef] [Google Scholar]
  42. Havkin-Frenkel D., Dorn R., Leustek T., Plant tissue culture for production of secondary metabolites, Food Technol. 51 (1997) 56–61. [Google Scholar]
  43. Podstolski A., Havkin-Frenkel D., Malinowski J., Blount J., Kourteva G., Dixon R.A., Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia, Phytochem. 61 (2002) 611–620. [CrossRef] [Google Scholar]
  44. Pak F.E., Gropper S., Dai W.D., Havkin-Frenkel D., Belanger F.C., Characterization of a multifunctional methyltranferase from the orchid Vanilla planifolia, Plant Cell Rep. 22 (2004) 969–966. [Google Scholar]
  45. Odoux E., Chauwin A., Brillouet J.M., Purification and characterization of vanilla bean (Vanilla planifolia Andrews) Formula -D-glucosidase, J. Agric. Food Chem. 51 (2003) 3168–3173. [CrossRef] [PubMed] [Google Scholar]
  46. Wild-Altamirano C., Enzymatic activity during growth of vanilla fruit. 1. Proteinase, glucosidase, peroxidase and polyphenoloxidase, J. Food Sci. 34 (1969) 235–238. [CrossRef] [Google Scholar]
  47. Heckel E., De l’action du froid et des anesthésiques sur les feuilles de Angaecum fragrans Thou. (Faham) et sur les gousses vertes de la vanille, C.R. Acad. Sci. (Paris) 151 (1910) 128–131. [Google Scholar]
  48. Odoux E., Contribution à l’étude de l’hydrolyse de la glucovanilline en vanilline dans la « gousse » du vanillier (Vanilla planifolia G. Jackson), Univ. Montpellier II, Thèse, Montpellier, France, 2004, 149 p. [Google Scholar]
  49. De Lanessan J.-L., Vanille, in: de Lanessan J.-L. (Eds.), Les plantes utiles des colonies françaises, Impr. Natl., Paris, France, 1886. [Google Scholar]
  50. Joel D.M., French J.C., Graft N., Kourteva G., Dixon R.A., Havkin-Frenkel D., A hairy tissue produces vanillin, Isr. J. Plant Sci. 51 (2003) 157–159. [CrossRef] [Google Scholar]
  51. Swamy B.G.L., On the life-history of Vanilla planifolia, Bot. Gaz. 108 (1947) 449–456. [CrossRef] [Google Scholar]
  52. Odoux E., Escoute J., Verdeil J.L., Brillouet J.-M., Localization of Formula -D-glucosidase activity and glucovanillin in vanilla bean (Vanilla planifolia Andrews), Ann. Bot. 92 (2003) 437–444. [CrossRef] [PubMed] [Google Scholar]
  53. Boudet A.M., Alibert A., Marigo G., Vacuoles and tonoplast in the regulation of cellular metabolism, in: Membranes and compartmentation in the regulation of plant functions, Clarendon Press, Oxford, UK, 1984. [Google Scholar]
  54. Wink M., Compartmentation of secondary metabolites and xenobiotics in plant vacuoles, Adv. Bot. Res. 25 (1997) 141–169. [CrossRef] [Google Scholar]
  55. Beckman C. H., Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol. 57 (2000) 101–110. [CrossRef] [Google Scholar]
  56. Bartholomew D.M., Van Dyk D.E., Cindy Lau S.-M., O’keefe D.P., Rea P.A., Viitanen P.V., Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates, Plant Physiol. 130 (2002) 1562–1572. [CrossRef] [PubMed] [Google Scholar]