Free Access
Issue
Fruits
Volume 62, Number 5, September-October 2007
Page(s) 303 - 315
DOI https://doi.org/10.1051/fruits:2007026
Published online 19 September 2007
  1. Fondoun J.M., Tiki T.M., Kengue J., Ricinodendron heudelotii (Djansang): Ethnobotany and importance for forest dwellers in southern Cameroon, Plant Genet. Res. Newsl. 117 (1999) 1–11. [Google Scholar]
  2. Ndoyé O., The market of non timber forest product in the humid forest zone of Cameroon and its borders: structure, conduct, performance and policy implication, CIFOR, Rep., Bogor, Indonesia, 1995, 86 p. [Google Scholar]
  3. Shiembo P.N., Newton A.C., Leakey R.R.B., Vegetative propagation of Ricinodendron heudelotii, a West African fruit tree, J. Trop. For. Sci. 9 (1997) 514–525. [Google Scholar]
  4. Nguelé O.S., Essai de greffage de Ricinodendron heudelotii (Baill.), Univ. Yaoundé I, mém. DESS, Yaoundé, Cameroun, 2000, 43 p. [Google Scholar]
  5. Fotso, Donfagsiteli T.N., Mbouna D., Omokolo N.D., Propagation de Ricinodendron heudelotii par bouturage in vitro, Fruits 59 (5) (2004) 351–358. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Fotso, Organogenèse in vitro de quelques espèces forestières à usages multiples, Univ. Yaoundé I, Thèse, Yaoundé, Cameroun, 2005, 160 p. [Google Scholar]
  7. Étienne H., Incidence des paramètres hydriques et hormonaux sur l’induction de l’ontogenèse des embryons somatiques d’Hevea brasiliensis en référence au modèle zygotique, Univ. Pierre et Marie Curie, thèse, Paris, France, 1993, 161 p. [Google Scholar]
  8. Finstal K., Brown D.C.W., Characterization of competence during induction of somatic embryogenesis in Alfalfa tissue cultures, Plant Cell. Tissue Organ Cult. 34 (1993) 125–152. [CrossRef] [Google Scholar]
  9. Auge R., Les phénomènes physiologiques liés à la réalisation des cultures in vitro, in: Beauchesne G., La culture in vitro et ses applications horticoles, 3e éd., Presses Polytech. Romand., Lausane, Suisse, 1989, pp. 7–15. [Google Scholar]
  10. Faure O., Aarouf J., Metabolism of reserve products during development of somatic embryos in grapevine, Plant Sci. 96 (1994) 167–178. [CrossRef] [Google Scholar]
  11. Blanc G., Lardet L., Matin A., Jacob J., Carron M., Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis, J. Exp. Bot. 53 (2002) 1453–1462. [CrossRef] [PubMed] [Google Scholar]
  12. Gaspar T., Aspects physiologiques de l’organogenèse in vitro, in: Zrÿrd J.P. (Éd.), Culture de cellules, tissus et organes végétaux : Fondements théoriques et utilisations pratiques, Presses Polytech. Romand., Lausanne, Suisse, 1988, pp. 69–86. [Google Scholar]
  13. Van Huystee R.B., Cairns W.L., Progress and prospects in the use of peroxydase to study cell development, Phytochem. 21 (1988) 1843–1847. [Google Scholar]
  14. Georges E.F., Scherrington P.D., Plant propagation by tissue culture, Exegetic Ltd., Basingstoke, UK, 1984, 108 p. [Google Scholar]
  15. Williams E.G., Maheswaran G., Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group, Ann. Bot. 57 (1986) 443–462. [Google Scholar]
  16. Fotso, Donfagsiteli T.N., Mbouna D., Omokolo N.D., Régénération in vitro du Ricinodendron heudelotii, Cah. Agric. 16 (1) 2007 31–36. [Google Scholar]
  17. Omokolo N.D., Preliminary results on the in vitro regeneration of Ricinodendron heudelotii (Baill.), in: Bosch C., Borus D., Siemonsma J. (Eds.), Proc. First Prota Int. Workshop, Prota Small Project Initiative (PSPI), Nairobi, Kenya, 2002, pp. 325–326. [Google Scholar]
  18. Wann S.R., Johnson M.A., Noland T.L., Carlson J.A., Chemical differences between embryogenic and non embryogenic callus of Picea abies, Plant Cell. Rep. 6 (1987) 39–42. [Google Scholar]
  19. Somleva M.N., Schmidts E.D.L., De Vries S.C., Embryogenic cells in Dactylis glomerata (Poaceae) explants identified by cell tracking and SERK expression, Plant cell. Rep. 19 (2000) 718–726. [CrossRef] [Google Scholar]
  20. Lardet L., Piomo G., Oriol F., Dechamp E., Carron M.P., Relations between biochemical characteristics and conservation ability in Hevea brasiliensis zygotic and somatic embryo, Can. J. Bot. 27 (1999) 1168–1177. [CrossRef] [Google Scholar]
  21. Alemano I., Berthouly M., Michaux-Ferrière N., A comparison between Theobroma cacao zygotic embryogenesis and somatic embryogenesis from floral explants, In Vitro Cell. Dev. Biol.-Plant 33 (1997) 163–172. [CrossRef] [Google Scholar]
  22. Omokolo N.D., Ndzomo G.T., Niemenak N., Phenols content, acidic peroxidase and IAA–oxidase during somatic embryogenesis in Theobroma cacao L., Biol. Plant. 39 (3) (1997) 337–347. [CrossRef] [Google Scholar]
  23. Huang T., Peng S., Dong G., Zhang L., Li G., Plant regeneration from leaf derived callus in Citrus grandis: effects of auxins in callus induction medium, Plant Cell. Tissue Organ Cult. 51 (2002) 35–41. [Google Scholar]
  24. Driver J.A., Kuniyuki A.H., In vitro propagation of Paradox walnut rootstock, HortScience 19 (1984) 507–509. [Google Scholar]
  25. Morel G., Wetmore R.H., Tissue culture of monocotyledons, Am. J. Bot. 38 (1951) 138–140. [CrossRef] [Google Scholar]
  26. Booij I., Piombo G., Risterucci J.M., Coupé M., Thomas D., Ferry M., Étude de la composition chimique de dattes à différents stades de maturité pour la caractérisation variétale de divers cultivars de palmier dattier (Phoenix dactylifera L.), Fruits 47 (1992) 667–677. [Google Scholar]
  27. Ashwell G., Colorimetric analysis of saccharides, in: Colowick S., Kaplan N.O. (Eds.), Methods in Enzymology, Acad. Press Inc., New York, USA, 3, 1957, pp. 73–105. [Google Scholar]
  28. Macheix J.J., Fleuriet A., Billot J., Fruit phenolic, CRC press Inc., Boca Raton, Fla., USA, 990, pp. 378–380. [Google Scholar]
  29. Marigo G., Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux, Anal. 2 (1973) 106–110. [Google Scholar]
  30. Lecouteux C.G., Lai F.M., Bryan D., Mc Kresie B.D., Maturation of Alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress, Plant. Sci. 94 (1993) 207–213. [CrossRef] [Google Scholar]
  31. Bradford M.M., A rapid and sensitive method for the quantitative of microgram quantities of protein utilizing the principle of protein–Dye binding, Ann. Biochem. 2 (1976) 248–254. [CrossRef] [Google Scholar]
  32. Thorpe T.A., Tran Thanh van M., Gaspar T., Isoperoxidases in epidermal layer of tobacco and changes during organ formation in vitro, Physiol. Plant. 44 (1978) 388–394. [CrossRef] [Google Scholar]
  33. Niemenak N., Recherche des marqueurs biochimiques et modifications histologiques au cours de la callogenèse et de l’embryogenèse somatique in vitro chez Theobroma cacao L., Univ. Yaoundé I, Thèse, Yaoundé, Cameroun, 1998, 138 p. [Google Scholar]
  34. Alemanno L., Berthouly M., Michaux-Ferrière N., Histology of somatic embryogenesis from floral tissues of cacao, Plant Cell. Tissue Organ Cult. 46 (3) (1996) 187–194. [CrossRef] [Google Scholar]
  35. El Maâtaoui M., Espagna H., Michaux-Ferrière N., Histology of callogenesis and embryogenesis induced in stem fragments of cork oak (Quercus suber) cultured in vitro, Ann. Bot. 66 (1990) 183–190. [Google Scholar]
  36. Verdeil J.L., Hocher V., Huet C., Grosdemange F., Escoute J., Ferrière N., Nicole M., Ultra structural changes in coconut calli associated with the acquisition of embryogenic competence, Cah. Agric. 88 (2001) 9–18. [Google Scholar]
  37. Schwendiman J., Pannetier C., Michaux-Ferrière N., Histology of embryogenic formations during in vitro culture of oil palm Elaeis guineensis Jacq., Oléagineux 45 (1990) 409–418. [Google Scholar]
  38. Jasanthi M., Mandala P.K., Plant regeneration through somatic embryogenesis and RAPD analysis of regenerated plants in Tylophora indica, In vitro Cell Dev. Biol. 37 (2001) 576–580. [CrossRef] [Google Scholar]
  39. De Wald S.G., Lithz R.E., Moore G.A., Optimizing somatic embryo production in mango, J. Am. Soc. Hortic. Sci. 114 (1993) 712–716. [Google Scholar]
  40. Cailou F., Julien-Guerrier J., Linossier L., Coudret A., Long term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis, Plant Sci. 120 (1996) 185–196. [CrossRef] [Google Scholar]
  41. Charbit E., Recherche des paramètres biochimiques et histologiques associés aux potentialités embryogènes et régénérant des cals friables entretenus d’Hevea brasiliensis, Univ. Montpellier II, Sci. Tech. Languedoc, Mém. DEA, Montpellier, France, 1998, 81 p. [Google Scholar]
  42. Hrubcova M., Cvikrova M., Eder J., Peroxidase activities and contents of phenolic acids in embryogenic and non embryogenic Medicago sativa cell suspension cultures, Biol. Plant. 36 (1994) 175–182. [CrossRef] [Google Scholar]
  43. Ansaldi C., Recherche de descripteurs des phases précoces de l’embryogenèse somatique chez Ie café, Univ. Toulouse Paul Sabatier, Mém. DESS, Toulouse, France, 2002, 26 p. [Google Scholar]
  44. Van Engelen F.A., de Vries S.C., Extra cellular proteins in plant embryogenesis, Trends Genet. 8 (1992) 66–70. [PubMed] [Google Scholar]
  45. El Hadrami I., d’Auzac J., Effect of growth regulators on polyamine content and peroxidase activity in Hevea brasiliensis callus, Ann. Bot. 69 (1992) 323–325. [Google Scholar]
  46. Von Arnold S., Clapham D., Egertstotter U., Mo L.H., Somatic embryogenesis in conifers, a case study of induction and development of somatic embryos in Picea abies, Plant Growth Regul. 20 (1996) 3–9. [CrossRef] [Google Scholar]