Free Access
Volume 63, Number 5, September-October 2008
Page(s) 285 - 296
Published online 22 October 2008
  1. Grattan S.R., Grieve C.M., Salinity-mineral nutrient relations in horticultural crops, Sci. Hortic. 78 (1999) 127–157. [CrossRef] [Google Scholar]
  2. Greenway H., Munns R., Mechanisms of salt tolerance in nonhalophytes, Annu. Rev. Plant Physiol. 31 (1980) 149–190. [CrossRef] [Google Scholar]
  3. Marschner H., Mineral nutrition of higher plants, Acad. Press, London, UK, 1995. [Google Scholar]
  4. Hardegree S.P., Emmerich W.E., Partitioning water potential and specific salt effects on seed germination of four grasses, Ann. Bot. 66 (1990) 587–595. [Google Scholar]
  5. Tobe K., Li X., Omasa K., Effects of sodium, magnesium and calcium salts on seed germination and radicle survival of a halophyte, Kalidium capsicum (Chenopodiaceae), Aust. J. Bot. 50 (2002) 163–169. [CrossRef] [Google Scholar]
  6. Shannon M.C., Breeding, selection, and the genetics of salt tolerance, in: Staples R.C. (Ed.), Salinity tolerance in plants: strategies for crop improvement, Wiley, New York, USA, 1984, pp. 231–254. [Google Scholar]
  7. Bliss R.D., Platt-Aloia K.A., Thomson W.W., The inhibitory effect of NaCl on barley germination, Plant Cell Environ. 9 (1986) 727–733. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  8. LaHaye P.A., Epstein E., Salt toleration by plants: enhancement with calcium, Sci. 166 (1969) 395–396. [CrossRef] [Google Scholar]
  9. Cramer G.R., Lauchli A., Polito V.S., Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79 (1985) 207–211. [CrossRef] [PubMed] [Google Scholar]
  10. Cramer G.R., Sodium–calcium interactions under salinity stress, in: Lauchli A., Lüttge U. (Eds.), Salinity: environment – plants – molecules, Klüwer Acad. Publ., Dordrecht, Holl., 2002, pp. 205–227. [Google Scholar]
  11. Allen G.J., Wyn Jones R.G., Leigh R.A., Sodium transport measured in plasma membrane vesicles isolated from wheat genotypes with differing K+/Na+ discrimination traits, Plant Cell Environ. 18 (1995) 105–115. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  12. Nabil M., Coudret A., Effects of sodium chloride on growth, tissue elasticity and solute adjustment in two Acacia nilotica subspecies, Physiol. Plantarum 93 (1995) 217–224. [CrossRef] [Google Scholar]
  13. Azaizeh H., Gunse B., Steudle E., Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings, J. Plant Physiol. 99 (1992) 886–894. [CrossRef] [Google Scholar]
  14. Cramer G.R., Kinetics of maize leaf elongation. 2. Response of a Na-excluding cultivar and a Na-including cultivar to varying Na/Ca salinities, J. Exp. Bot. 43 (1992) 857–864. [CrossRef] [Google Scholar]
  15. Busch D.S., Calcium regulation in plant cell and its role in signaling, Annu. Rev. Plant Physiol. 46 (1995) 95–122. [CrossRef] [Google Scholar]
  16. Hasegawa P., Bressan R.A., Zhu J. K., Bohnert H.J., Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Mol. Biol. 51 (2000) 463–499. [CrossRef] [Google Scholar]
  17. Alkhani H., Ghorbani M., A contribution to the halophytic vegetation and flora of Iran, in: Lieth H., Al Massoum A. (Eds.), Towards the rational use of high salinity tolerance plants, Kluwer Acad. Publ., Dordrecht, Neth., vol. 1, 1992, pp. 35–44. [Google Scholar]
  18. Behboudian M.H., Walker R.R., Torokfaivy E., Effects of water stress and salinity on photosynthesis of pistachio, Sci. Hortic. 29 (1986) 251–261. [CrossRef] [Google Scholar]
  19. Picchioni G.A., Miyamota S., Salt effects on growth and ion uptake of pistachio rootstock seedlings, J. Am. Soc. Hortic. Sci. 115 (1990) 647–653. [Google Scholar]
  20. Ferguson L., Poss J.A., Grattan S.R., Grieve C.M., Wang D., Wilson C., Donovan Chao C.T., Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress, J. Am. Soc. Hortic. Sci. 127 (2002) 194–199. [Google Scholar]
  21. Strain H.H., Svec W.A., Extraction, separation, estimation and isolation of chlorophylls, in: Vernon L.P., Seely G.R. (Eds.),The chlorophylls, Acad. Press, New York, USA, 1996, 21–66. [Google Scholar]
  22. Lutts S., Kinet J.M., Bouharmont J., NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Ann. Bot. 78 (1996) 389–398. [CrossRef] [Google Scholar]
  23. Yamasaki S., Dillenburg L.C., Measurments of leaf relative water content in Araucaria angustifolia, Rev. Bras. Fisiol. Veg. 11 (1999) 69–75. [Google Scholar]
  24. Chapman H.D., Pratt P.F., Methods of plant analysis, in: Chapman H.D., Pratt P.F. (Eds.), Methods of analysis for soils, plants and water, Acad. Press, Riverside, CA, USA, 1982, pp. 60–193. [Google Scholar]
  25. Anon., STAT User’s Guide, Version 6.11, Vol. 1., Stat. Anal. Syst. Inst., Cary, NC, USA, 1996. [Google Scholar]
  26. Tyerman S.D., Skerrett I.M., Root ion channels and salinity, Sci. Hortic. 78 (1999) 175–235. [CrossRef] [Google Scholar]
  27. Tufariello J.A.M., Hoffmann R., Bisson M.A., The effect of divalent cations on Na+ tolerance in charophytes. II. Chara coralline, Plant Cell Environ. 11 (1988) 473–479. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  28. Roberts S.K., Tester M., Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells, J. Exp. Bot. 48 (1997) 839–846. [CrossRef] [Google Scholar]
  29. Tyerman S.D., Skerrett I.M., Garrill A., Findlay G.P., Leigh R.A., Pathways for the permeation of Na+ and Cl into protoplasts derived from the cortex of wheat roots, J. Exp. Bot. 48 (1997) 459–480. [CrossRef] [PubMed] [Google Scholar]
  30. Hoffmann R., Tufariello J., Bisson M.A., Effect of divalent cations on Na+ permeability of Chara coralline and freshwater grown Chara buckellii, J. Exp. Bot. 40 (1989) 875–881. [CrossRef] [Google Scholar]
  31. Srivastava T.P., Gupta S.C., Lal P., Muralia P.N., Kumar A., Effect of salt stress on physiological and biochemical parameters of wheat, Ann. Arid Zone 27 (1998) 197–204. [Google Scholar]
  32. Giriji C., Smith B.N., Swamy P.M., Interactive effects of sodium chloride and calcium chloride on the accumulation of praline and glycine betaine in peanut (Arachis hypogaea L.), Environ. Exp. Bot. 47 2002 1–10. [Google Scholar]
  33. Hernandez J.A., Olmos E., Corpas F.J., Sevilla F., Del Rio L.A., Salt induced oxidative stress in chloroplasts of pea plants, Plant Sci. 105 (1995) 151–167. [CrossRef] [Google Scholar]
  34. Belkhodja R., Morales F., Abadia A., Gomez-Aparisi J., Abadia J., Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.), J. Plant Physiol. 104 (1994) 667–673. [Google Scholar]
  35. Lynch J., Lauchli A., Salinity affects intracellular calcium in corn root protoplasts, Plant Physiol. 87 (1988) 351–356. [CrossRef] [PubMed] [Google Scholar]
  36. Satti S.M.E., Al-Yahyai R.A., Salinity tolerance in tomato: implications of potassium, calcium and phosphorus. Commun. Soil Sci. Plant Anal. 26 (17 & 18) (1995) 2749–2760. [Google Scholar]
  37. Asch F., Dingkuhn M., Wittstock C., Doerffling K., Sodium and potassium uptake of rice panicles as affected by salinity and season in relation to yield and yield components, Plant Soil 207 (1999) 133–145. [CrossRef] [Google Scholar]
  38. Bolat I., Kaya C., Almaca A., Timucin S., Calcium sulfate improves salinity tolerance in rootstocks of plum, J. Plant Nutr. 29 (2006) 553–564. [CrossRef] [Google Scholar]
  39. Schachtman D., Lio W., Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants, Trends Plant Sci. 4 (1999) 281–287. [CrossRef] [PubMed] [Google Scholar]
  40. Banuls J., Legaz F., Primo-Millo E., Salinity-calcium interactions on growth and ionic concentration of citrus plants, Plant Soil 133 (1991) 39–46. [CrossRef] [Google Scholar]
  41. Suarez D.L., Grieve C.M., Predicting cation ratios in corn from saline solution composition, J. Exp. Bot. 39 (1988) 605–612. [CrossRef] [Google Scholar]
  42. Banuls J., Serna M.D., Legaz F., Talon M., Primo-Millo E., Growth and gas exchange parameters of citrus plants stressed with different salts, J. Plant Physiol. 150 (1997) 194–199. [Google Scholar]
  43. Zekri M., Parsons L.R., Salinity tolerance of citrus rootstocks: effects of salt on root and leaf mineral concentrations, Plant Soil 147 (1992) 171–181. [CrossRef] [Google Scholar]
  44. Gorham J., WynJones R.G., McDonnell E., Some mechanisms of salt tolerance in crop plants, Plant Soil 89 (1985) 15–40. [CrossRef] [Google Scholar]
  45. Hampson C.R., Simpson G.M., Effect of temperature, salt and osmotic potential on early growth of wheat (Triticum aestivum), Can. J. Bot. 68 (1990) 524–528. [CrossRef] [Google Scholar]
  46. Ashraf M., Salt tolerance of pigeon pea Cajanus cajan (L.) Millsp. at three growth stages, Ann. Appl. Biol. 124 (1994) 153–164. [CrossRef] [Google Scholar]
  47. Santa-Maria G.E., Epstein H., Potassium/sodium selectivity in wheat and the amphiploid cross wheat × Lophopyrum elongatum, Plant Sci. 160 (2001) 523–534. [CrossRef] [PubMed] [Google Scholar]