Free Access
Issue
Fruits
Volume 65, Number 2, March-April 2010
Page(s) 97 - 112
DOI https://doi.org/10.1051/fruits/20010005
Published online 29 March 2010
  1. Modarres R.Da Silva V.P.R., Rainfall trends in arid and semi-arid regions of Iran, J. Arid Environ. 70 (2007) 344–355. [CrossRef] [Google Scholar]
  2. Anon., Land degradation in South Asia: its severity, cause and effects upon the people, FAO, World Soil Res. Rep. 78, Rome, Italy, 1994. [Google Scholar]
  3. Vahdati K., Nursery management and grafting of walnut, Khaniran Publ., Tehran, Iran, 2003. [Google Scholar]
  4. Fulton A., Buchner R., The effect of water stress on walnut trees growth, productivity and economics, UC Farm Advis. Draft Publ., Tehama Cty., Univ. Calif., U.S.A., Febr. 23, 2006. [Google Scholar]
  5. Pallardy S.G.Rhoads J.L., Morphological adaptations to drought in seedlings of deciduous angiosperms, Can. J. For. Res. 23 (1993) 1766–1774. [CrossRef] [Google Scholar]
  6. Girona J., Cohen M., Rodrigues I.Mata M., Walnut seedlings response to different levels of NaCl in irrigation water, Acta Hortic. 311 (1993) 191–200. [Google Scholar]
  7. Scartazza A., Proietti S., Moscatello A.Augusti A., Effect of water shortage on photosynthesis, growth and storage carbohydrate accumulation in walnut (Juglans regia L.), Acta. Hortic. 544 (2001) 277–232. [Google Scholar]
  8. Rosati A., Metcalf S., Buchner R., Fulton A.Lampinen B., Tree water status and gas exchange in walnut under drought, high temperature and vapour pressure deficit, J. Hortic. Sci. Biotech. 81 (2006) 415–420. [Google Scholar]
  9. Cochard H.L., Coll L., Roux X.L.Améglio T., Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut, Plant Physiol. 128 (2002) 282–290. [CrossRef] [PubMed] [Google Scholar]
  10. Lucier A.A., Hinckley T. M., Phenology, growth and water relations of irrigated and non-irrigated black walnut, For. Ecol. Manag. 4 (1982) 127–142. [CrossRef] [Google Scholar]
  11. Parker W.C.Pallardy S.G., Gas exchange during a soil drying cycle in seedlings of four black walnut (Juglans nigra L.) families, Tree Physiol. 9 (1991) 339–348. [PubMed] [Google Scholar]
  12. Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D.Somero G.N., Living with water stress: Evolution of osmolyte system, Science 217 (1982) 1214–1222. [CrossRef] [PubMed] [Google Scholar]
  13. McCue K.F.Hanson A.D., Drought and salt tolerance: Towards understanding and application, Trends Biotech. 8 (1990) 358–362. [CrossRef] [Google Scholar]
  14. Samaras Y., Bressan R.A., Csonka L.N., Garcia-Rios M., Paino D’Urzo M., Rhodes D., Proline accumulation during water deficit, in: Smirnoff N. (Ed.), Environment and plant metabolism. Flexibility and acclimation, Bios Scientific Publ., Oxford, UK, 1995., pp. 161–187. [Google Scholar]
  15. Smirnoff N.Stewart G.R., Stress metabolites and their role in coastal plants, Vegetatio 62 (1985) 273–278. [CrossRef] [Google Scholar]
  16. Smirnoff N.Cumbes Q.J., Hydroxyl radical scavenging activity of compatible solutes, Phytochem. 28 (1989) 1057–1060. [CrossRef] [Google Scholar]
  17. Hare P.D.Cress W.A., Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul. 21 (1997) 79–102. [CrossRef] [Google Scholar]
  18. Meier H., Reid J.S.G., Reserve polysaccharides other than starch in higher plants, in: Loewus F.A., Tanner W. (Eds.), Encyclopaedia of plant physiology, New series, Springer- Verlag, Berlin, Ger., 1982. [Google Scholar]
  19. Prado F.E., Boero C., Gallardo M.Gonzalez J.A., Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa Willd. seeds, Bot. Bull. Acad. Sin. 41 (2000) 27–34. [Google Scholar]
  20. Finkelstein R.R.Gibson S.I., ABA and sugar interactions regulating development: cross-talk or voices in a crowd, Curr. Opin. Plant Biol. 5 (2001) 26–32. [CrossRef] [Google Scholar]
  21. Hoekstra F.A., Golovina E.A.Buitink J., Mechanisms of plant desiccation tolerance, Trends Plant Sci. 6 (2001) 431–438. [CrossRef] [PubMed] [Google Scholar]
  22. Koch KKoch K., Carbohydrate-modulated gene expression in plants, Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47 (1996) 509–540. [CrossRef] [PubMed] [Google Scholar]
  23. Sheen J., Zhou L.Jang J.C., Sugars as signalling molecules, Curr. Opin. Plant Biol. 2 (1999) 410–418. [CrossRef] [PubMed] [Google Scholar]
  24. Smeekens SSmeekens S., Sugar-induced signal transduction in plants, Annu. Rev. Plant Biol. 51 (2000) 49–81. [CrossRef] [Google Scholar]
  25. Al Hakimi A., Monneveux P.Galiba G., Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T. polonicum into T. durum, J. Genet. Breed. 49 (1995) 237–244. [Google Scholar]
  26. Pandey R., Agarwal R.M., Water stress-induced changes in praline contents and nitrate reductase activity in rice under light and dark conditions, Physiol. Mol. Biol. Plants 4 (1998) 53–57. [Google Scholar]
  27. Hohl M.Peter S., Water relations of growing maize coleoptiles. Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure, Plant Physiol. 95 (1991) 716–722. [CrossRef] [PubMed] [Google Scholar]
  28. Lu Z.Neumann P.M., Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition, J. Exp. Bot. 49 (1998) 1945–1952. [CrossRef] [Google Scholar]
  29. Carpita N., Sabularse D., Monfezinos D., Delmer D.P., Determination of the pore size of cell walls of living plant cells, Sci. 205 (1979) 1144–1147. [CrossRef] [Google Scholar]
  30. Verslues P.E., Ober E.S.Sharp R.E., Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions, Plant Physiol. 116 (1998) 1403–1412. [CrossRef] [PubMed] [Google Scholar]
  31. Lotfi N., Vahdati K., Kholdebarin B., Reza A., Hassani D., Effects of water stress on germination in different provenances of J. regia L. seeds from different bioclimatic zones in Iran, in: Yujin Jung, Proc. 5th Int. Crop Sci. Congr. Exhib., Korean Soc. Crop Sci. Int. Soc. Crop Sci., Jeju, Korea, 2008, p. 194. [Google Scholar]
  32. Lotfi N., Vahdati K., Kholdebarin B.Najafian Ashrafi E., Germination, mineral composition, and ion uptake in walnut under salinity conditions, HortScience 44 (2009) 1352–1357. [Google Scholar]
  33. Michel B.E.Kaufmann M.R., The osmotic potential of polyethylene glycol 6000, Plant Physiol. 51 (1973) 914–916. [CrossRef] [PubMed] [Google Scholar]
  34. Vahdati K.Hoseini S.H., Introducing an innovative procedure for large commercial seed lots stratification in Persian walnut, Acta Hortic. 705 (2006) 355–357. [Google Scholar]
  35. Turner N.CTurner N.C., Techniques and experimental approaches for the measurement of plant water status, Plant Soil. 58 (1981) 339–366. [CrossRef] [Google Scholar]
  36. Bates L.S., Waldron R.P.Teare I.D., Rapid determination of free proline for water stress studies, Plant Soil. 39 (1973) 205–208. [CrossRef] [Google Scholar]
  37. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A.Smith F., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350–356. [CrossRef] [PubMed] [Google Scholar]
  38. Jobson J.D., Applied multivariate data analysis, Vol. II: Categorical and multivariate methods, Springer-Verlag, Berlin, Germany, 1992. [Google Scholar]
  39. Zhang X.L., Zang R.G.Li C.Y., Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress, Plant Sci. 166 (2004) 791–797. [CrossRef] [Google Scholar]
  40. Duan B.L., Lu Y.W., Yin C.Y., Junttila O.Li C.Y., Physiological responses to drought and shade in two contrasting Picea asperata populations, Physiol. Plant. 124 (2005) 476–484. [CrossRef] [Google Scholar]
  41. Li C.Y.Wang K.Y., Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations, For. Ecol. Manag. 179 (2003) 377–385. [CrossRef] [Google Scholar]
  42. Berg L.V.D.Zeng Y.J., Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000, S. Afr. J. Bot. 72 (2006) 284–286. [CrossRef] [Google Scholar]
  43. Verslues P.E.Sharp R.E., Proline accumulation in maize primary roots at low water potentials. II Metabolic source of increased proline deposition in the elongation zone, Plant Physiol. 119 (1999) 1349–1360. [CrossRef] [PubMed] [Google Scholar]
  44. Larher F., Leport L., Petrivalsky M.Chappart M., Effectors for the osmoinduced proline response in higher plants, Plant Physiol. Biochem. 31 (1993) 911–922. [Google Scholar]
  45. Fischer C.Höll W., Food reserves in Scots pine (Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles, Trees 5 (1991) 187–195. [Google Scholar]
  46. Bartels D.Sunkar R., Drought and salt tolerance in plants, Crit. Rev. Plant Sci. 24 (2005) 23–58. [CrossRef] [Google Scholar]
  47. Chaves M.MChaves M.M., Effects of water deficits on carbon assimilation, J. Exp. Bot. 42 (1991) 1–16. [CrossRef] [Google Scholar]
  48. Bogeat-Triboulot M.B., Brosche M., Renaut J., Jouve L., Le Thiec D., Fayyaz P., Vinocur B., Witters E., Laukens K., Teichmann T., Altman A., Hausman J.F., Polle A., Kangasjrvi J.Dreyer E., Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions, Plant Physiol. 143 (2007) 876–892. [CrossRef] [PubMed] [Google Scholar]
  49. Patakas A.Noitsakis B., Leaf age effects on solute accumulation in water-stressed grapevines, Plant Physiol. 158 (2001) 63–69. [CrossRef] [Google Scholar]
  50. Kameli A.Losel D.M., Carbohydrates and water status in wheat plants under water stress, New Phytol. 125 (1993) 609–614. [CrossRef] [Google Scholar]
  51. Delauney A.J.Verma D.P.S., Proline biosynthesis and osmoregulation in plants, Plant J. 4 (1993) 215–223. [CrossRef] [Google Scholar]
  52. Gibson S.IGibson S.I., Control of plant development and gene expression by sugar signalling, Curr. Opin. Plant Biol. 8 (2005) 93–102. [CrossRef] [PubMed] [Google Scholar]
  53. Wang Z., Quebedeaux B.Stutte G.W., Partitioning of [14C] glucose into sorbitol and other carbohydrates in apple under water stress, Aus. J. Plant Physiol. 23 (1996) 245–251. [CrossRef] [Google Scholar]