Free Access
Review
Issue
Fruits
Volume 67, Number 1, January-February 2012
Page(s) 49 - 64
DOI https://doi.org/10.1051/fruits/2011066
Published online 22 December 2011
  1. Giovannucci E., A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer, Exp. Biol. Med. 227 (2002) 852–859. [PubMed] [Google Scholar]
  2. Giovannucci E., Lycopene and prostate cancer risk. Methodological considerations in the epidemiologic literature, Pure Appl. Chem. 74 (2002) 1427–1434. [CrossRef] [Google Scholar]
  3. Giovannucci E., Rimm E.B., Liu Y., Stampfer M.J., Willett W.C., A, prospective study of tomato products, lycopene, and prostate cancer risk, J. Natl. Cancer Inst. 94 (2002) 391–398. [PubMed] [Google Scholar]
  4. Arab L., Steck S., Lycopene and cardiovascular disease, Am. J. Clin. Nutr. 71 (2000) 1691–1695. [Google Scholar]
  5. Sesso H.D., Liu S.M., Gaziano J.M., Buring J.E., Dietary lycopene, tomato-based food products and cardiovascular disease in women, J. Nutr. 133 (2003) 2336–2341. [PubMed] [Google Scholar]
  6. Boffetta P., Couto E., Wichmann J., Ferrari P., Trichopoulos D., Bueno-de-Mesquita H.B., van Duijnhoven F.J.B., Buchner F.L., Key T., Boeing H., Nothlings U., Linseisen J., Gonzalez C.A., Overvad K., Nielsen M.R.S., Tjonneland A., Olsen A., Clavel-Chapelon F., Boutron-Ruault M.C., Morois S., Lagiou P., Naska A., Benetou V., Kaaks R., Rohrmann S., Panico S., Sieri S., Vineis P., Palli D., van Gils C.H., Peeters P.H., Lund E., Brustad M., Engeset D., Huerta J.M., Rodriguez L., Sanchez M.J., Dorronsoro M., Barricarte A., Hallmans G., Johansson I., Manjer J., Sonestedt E., Allen N.E., Bingham S., Khaw K.T., Slimani N., Jenab M., Mouw T., Norat T., Riboli E., Trichopoulou A., Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation Into Cancer and Nutrition (EPIC), J. Natl. Cancer Inst. 102 (2010) 529–537. [CrossRef] [PubMed] [Google Scholar]
  7. Jordan J., The Heirloom tomato as cultural object: investigating taste and space, Sociol. Rural. 47 (2007) 20–41. [CrossRef] [Google Scholar]
  8. Beckles D.M., Factors affecting the postharvest sugars and total soluble solids in tomato (Solanum lycopersicum L.) fruits, Postharvest Biol. Technol. 63 (2012) 129–140. [CrossRef] [Google Scholar]
  9. Stevens M.A., Inheritance of tomato quality components, in: J.J. (Ed.), Plant breeding reviews, AVI Publ. Co., Westport, Connecticut, U.S.A., 1986. [Google Scholar]
  10. Baldet P., Hernould M., Laporte F., Mounet F., Just D., Mouras A., Chevalier C., Rothan C., The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants, J. Exp. Bot. 57 (2006) 961–970. [CrossRef] [PubMed] [Google Scholar]
  11. Ho L.C., Hewitt J.D., Fruit development, Chapman and Hall, N.Y., U.S.A., 1986. [Google Scholar]
  12. Mounet F., Moing A., Garcia V., Petit J., Maucourt M., Deborde C., Bernillon S., Le Gall G., Colquhoun I., Defernez M., Giraudel J.L., Rolin D., Rothan C., Lemaire-Chamley M., Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development, Plant Physiol. 149 (2009) 1505–1528. [CrossRef] [PubMed] [Google Scholar]
  13. Wang H., Schauer N., Usadel B., Frasse P., Zouine M., Hernould M., Latche A., Pech J.C., Fernie A.R., Bouzayen M., Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling, Plant Cell 21 (2009) 1428–1452. [CrossRef] [PubMed] [Google Scholar]
  14. Gillaspy G., Bendavid H., Gruissem W., Fruits – a developmental perspective, Plant Cell 5 (1993) 1439–1451. [CrossRef] [PubMed] [Google Scholar]
  15. Bohner J., Bangerth F., Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in size, Physiol. Plant. 72 (1988) 316–320. [CrossRef] [Google Scholar]
  16. Bertin N., Lecomte A., Brunel B., Fishman S., Genard M., A model describing cell polyploidization in tissues of growing fruit as related to cessation of cell proliferation, J. Exp. Bot. 58 (2007) 1903–1913. [CrossRef] [PubMed] [Google Scholar]
  17. Klann E.M., Hall B., Bennett A.B., Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit, Plant Physiol. 112 (1996) 1321–1330. [CrossRef] [PubMed] [Google Scholar]
  18. Carrari F., Fernie A.R., Metabolic regulation underlying tomato fruit development, J. Exp. Bot. 57 (2006) 1883–1897. [CrossRef] [PubMed] [Google Scholar]
  19. Cheniclet C., Rong W.Y., Causse M., Frangne N., Bolling L., Carde J.-P., Renaudin J.-P., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol. 139 (2005) 1984–1994. [CrossRef] [PubMed] [Google Scholar]
  20. Chevalier C., Nafati M., Mathieu-Rivet E., Bourdon M., Frangne N., Cheniclet C., Renaudin J.P., Gevaudant F., Hernould M., Elucidating the functional role of endoreduplication in tomato fruit development, Ann. Bot. 107 (2011) 1159–1169. [CrossRef] [PubMed] [Google Scholar]
  21. Prudent M., Causse M., Genard M., Tripodi P., Grandillo S., Bertin N., Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection, J. Exp. Bot. 60 (2009) 923–937. [CrossRef] [PubMed] [Google Scholar]
  22. Menu T., Saglio P., Granot D., Dai N., Raymond P., Ricard B., High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size, Plant Cell Environ. 27 (2004) 89–98. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. Odanaka S., Bennett A.B., Kanayama Y., Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato, Plant Physiol. 129 (2002) 1119–1126. [CrossRef] [PubMed] [Google Scholar]
  24. Ohyama A., Ito H., Sato T., Nishimura S., Imai T., Hirai M., Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit, Plant Cell Physiol. 36 (1995) 369–376. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. Zanor M.I., Osorio S., Nunes-Nesi A., Carrari F., Lohse M., Usadel B., Kuhn C., Bleiss W., Giavalisco P., Willmitzer L., Sulpice R., Zhou Y.H., Fernie A.R., RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility, Plant Physiol. 150 (2009) 1204–1218. [CrossRef] [PubMed] [Google Scholar]
  26. Nesbitt T.C., Tanksley S.D., fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution, Plant Physiol. 127 (2001) 575–583. [CrossRef] [PubMed] [Google Scholar]
  27. Nguyen-Quoc B., Foyer C.H., A role for ’futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit, J. Exp. Bot. 52 (2001) 881–889. [CrossRef] [PubMed] [Google Scholar]
  28. Steinhauser M.C., Steinhauser D., Koehl K., Carrari F., Gibon Y., Fernie A.R., Stitt M., Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii, Plant Physiol. 153 (2010) 80–98. [CrossRef] [PubMed] [Google Scholar]
  29. Yamaki S., Metabolism and accumulation of sugars translocated to fruit and their regulation, J. Jpn. Soc. Hortic. Sci. 79 (2010) 1–15. [CrossRef] [Google Scholar]
  30. Luengwilai K., Beckles D.M., Starch granules in tomato fruit show a complex pattern of degradation, J. Agric. Food Chem. 57 (2009) 8480–8487. [CrossRef] [PubMed] [Google Scholar]
  31. Wang F., Sanz A., Brenner M.L., Smith A., Sucrose synthase, starch accumulation, and tomato fruit sink strength, Plant Physiol. 101 (1993) 321–327. [PubMed] [Google Scholar]
  32. Bungerkibler S., Bangerth F., Relationship between cell number, cell-size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant-growth regulators, Plant Growth Regul. 1 (1983) 143–154. [Google Scholar]
  33. Petreikov M., Yeselson L., Shen S., Levin I., Schaffer A.A., Efrati A., Bar M., Carbohydrate balance and accumulation during development of near-isogenic tomato lines differing in the AGPase-L1 allele, J. Am. Soc. Hortic. Sci. 134 (2009) 134–140. [Google Scholar]
  34. Guan H.P., Janes H.W., Light regulation of sink metabolism in tomato fruit .1. Growth and sugar accumulation, Plant Physiol. 96 (1991) 916–921. [CrossRef] [PubMed] [Google Scholar]
  35. Yelle S., Hewitt J.D., Robinson N.L., Damon S., Bennett A.B., Sink metabolism in tomato fruit. 3. Analysis of carbohydrate assimilation in a wild-species, Plant Physiol. 87 (1988) 737–740. [CrossRef] [PubMed] [Google Scholar]
  36. Obiadalla-Ali H., Fernie A.R., Lytovchenko A., Kossmann J., Lloyd J.R., Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism, Planta 219 (2004) 533–540. [CrossRef] [PubMed] [Google Scholar]
  37. N’tchobo H., Dali N., Nguyen-Quoc B., Foyer C.H., Yelle S., Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity, J. Exp. Bot. 50 (1999) 1457–1463. [CrossRef] [Google Scholar]
  38. Robinson N.L., Hewitt J.D., Bennett A.B., Sink metabolism in tomato fruit. 1. Developmental-changes in carbohydrate metabolizing enzymes, Plant Physiol. 87 (1988) 727–730. [CrossRef] [PubMed] [Google Scholar]
  39. Beckles D.M., The subcellular location of ADPglucose pyrophosphorylase in starch-storing cells, Univ. Camb., Camb., U.K., 1998, 168 p. [Google Scholar]
  40. Cong B., Barrero L.S., Tanksley S.D., Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication, Nat. Genet. 40 (2008) 800–804. [CrossRef] [PubMed] [Google Scholar]
  41. Knapp S., Bohs L., Nee M., Spooner D.M., Solanaceae – a model for linking genomics with biodiversity, Comp. Funct. Genomics 5 (2004) 285–291. [CrossRef] [PubMed] [Google Scholar]
  42. Agong S.G., Schittenhelm S., Friedt W., Assessment of tolerance to salt stress in Kenyan tomato germplasm, Euphytica 95 (1997) 57–66. [CrossRef] [Google Scholar]
  43. Turhan A., Seniz V., Estimation of certain chemical constituents of fruits of selected tomato genotypes grown in Turkey, Afr. J. Agric. Res. 4 (2009) 1086–1092. [Google Scholar]
  44. Turhan A., Seniz V., Kuscu H., Genotypic variation in the response of tomato to salinity, Afr. J. Biotechnol. 8 (2009) 1062–1068. [Google Scholar]
  45. Balibrea M.E., Martinez-Andujar C., Cuartero J., Bolarin M.C., Perez-Alfocea F., The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism, Funct. Plant Biol. 33 (2006) 279–288. [CrossRef] [Google Scholar]
  46. Yelle S., Chetelat R.T., Dorais M., Deverna J.W., Bennett A.B., Sink metabolism in tomato fruit. 4. Genetic and biochemical-analysis of sucrose accumulation, Plant Physiol. 95 (1991) 1026–1035. [CrossRef] [PubMed] [Google Scholar]
  47. Baxter C.J., Carrari F., Bauke A., Overy S., Hill S.A., Quick P.W., Fernie A.R., Sweetlove L.J., Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids, Plant Cell Physiol. 46 (2005) 425–437. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  48. Miron D., Schaffer A.A., Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl., Plant Physiol 95 (1991) 623–627. [CrossRef] [PubMed] [Google Scholar]
  49. Stommel J.R., Enzymatic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum, Plant Physiol. 99 (1992) 324–328. [CrossRef] [PubMed] [Google Scholar]
  50. Fridman E., Carrari F., Liu Y.S., Fernie A.R., Zamir D., Zooming in on a quantitative trait for tomato yield using interspecific introgressions, Science 305 (2004) 1786–1789. [CrossRef] [PubMed] [Google Scholar]
  51. Klann E.M., Chetelat R.T., Bennett A.B., Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit, Plant Physiol. 103 (1993) 863–870. [PubMed] [Google Scholar]
  52. Husain S.E., James C., Shields R., Foyer C.H., Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium, New Phytol. 150 (2001) 65–72. [CrossRef] [Google Scholar]
  53. Husain S.E., Thomas B.J., Kingston-Smith A.H., Foyer C.H., Invertase protein, but not activity, is present throughout development of Lycopersicon esculentum and L. pimpinellifolium fruit, New Phytol. 150 (2001) 73–81. [CrossRef] [Google Scholar]
  54. Levin I., Gilboa N., Cincarevsky F., Oguz I., Petreikov M., Yeselson Y., Shen S., Bar M., Schaffer A.A., Epistatic interaction between two unlinked loci derived from introgressions from Lycopersicon hirsutum further modulates the fructose-to-glucose ratio in the mature tomato fruit, Israel J. Plant Sci. 54 (2006) 215–222. [CrossRef] [Google Scholar]
  55. Levin I., Gilboa N., Yeselson E., Shen S., Schaffer A.A., Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits, Theor. Appl. Genet. 100 (2000) 256–262. [CrossRef] [Google Scholar]
  56. Schauer N., Zamir D., Fernie A.R., Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex, J. Exp. Bot. 56 (2005) 297–307. [CrossRef] [PubMed] [Google Scholar]
  57. Schaffer A.A., Levin I., Oguz I., Petreikov M., Cincarevsky F., Yeselson Y., Shen S., Gilboa N., Bar M., ADPglucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopersicon hirsutum-derived introgression encoding for the large subunit, Plant Sci. 152 (2000) 135–144. [CrossRef] [Google Scholar]
  58. Kortsee A.J., Appeldoorn N.J.G., Oortwijn M.E.P., Visser R.G.F., Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives, Planta 226 (2007) 929–939. [CrossRef] [PubMed] [Google Scholar]
  59. Petreikov M., Shen S., Yeselson Y., Levin I., Bar M., Schaffer A.A., Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit, Planta 224 (2006) 1465–1479. [CrossRef] [PubMed] [Google Scholar]
  60. Bertin N., Causse M., Brunel B., Tricon D., Genard M., Identification of growth processes involved in QTLs for tomato fruit size and composition, J. Exp. Bot. 60 (2009) 237–248. [CrossRef] [PubMed] [Google Scholar]
  61. Weber H., Heim U., Golombek S., Borisjuk L., Wobus U., Assimilate uptake and the regulation of seed development, Seed Sci. Res. 8 (1998) 331–345. [Google Scholar]
  62. Weber H., Borisjuk L., Wobus U., Sugar import and metabolism during seed development, Trends Plant Sci. 2 (1997) 169–174. [CrossRef] [Google Scholar]
  63. Ohto M., Fischer R.L., Goldberg R.B., Nakamura K., Harada J.J., Control of seed mass by APETALA2, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 3123–3128. [CrossRef] [PubMed] [Google Scholar]
  64. Yousef G.G., Juvik J.A., Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids, Theor. Appl. Genet. 103 (2001) 1022–1027. [CrossRef] [Google Scholar]
  65. Eshed Y., Zamir D., An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL, Genetics 141 (1995) 1147. [PubMed] [Google Scholar]
  66. Krieger U., Lippman Z.B., Zamir D., The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato, Nat. Genet. 42 (2010) 459–463. [CrossRef] [PubMed] [Google Scholar]
  67. Luengwilai K., Fiehn O.E., Beckles D.M., Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids, J. Agric. Food Chem. 58 (2010) 11790–11800. [CrossRef] [PubMed] [Google Scholar]
  68. Galiana-Balaguer L., Rosello S., Nuez F., Characterization and selection of balanced sources of variability for breeding tomato (Lycopersicon) internal quality, Genet. Res. Crop Evol. 53 (2006) 907–923. [CrossRef] [Google Scholar]
  69. Rick C.M., High soluble solids content in large-fruited tomato lines derived from a wild green-fruited-species, Hilgardia 42 (1974) 493–510. [Google Scholar]
  70. Stevens M.A., Kader A.A., Albrightholton M., Algazi M., Genotypic variation for flavor and composition in fresh market tomatoes, J. Am. Soc. Hortic. Sci. 102 (1977) 680–689. [Google Scholar]
  71. Grierson D., Kader A.A., Fruit ripening and quality, Chapman and Hall, Lond., U.K., 1986. [Google Scholar]
  72. Nookaraju A., Upadhyaya C.P., Pandey S.K., Young K.E., Hong S.J., Park S.K., Park S.W., Molecular approaches for enhancing sweetness in fruits and vegetables, Sci. Hortic. 127 (2010) 1–15. [CrossRef] [Google Scholar]
  73. Stitt M., Sulpice R., Keurentjes J., Metabolic networks: How to identify key components in the regulation of metabolism and growth, Plant Physiol. 152 (2010) 428–444. [CrossRef] [PubMed] [Google Scholar]
  74. Fernie A.R., Geigenberger P., Stitt M., Flux an important, but neglected, component of functional genomics, Curr. Opin. Plant Biol. 8 (2005) 174–182. [CrossRef] [PubMed] [Google Scholar]
  75. Stitt M., The first will be last and the last will be first: non-regulated enzymes call the tune, BIOS Sci. Publ. Ltd., Oxf., U.K., 1999. [Google Scholar]
  76. Barratt D.H.P., Derbyshire P., Findlay K., Pike M., Wellner N., Lunn J., Feil R., Simpson C., Maule A.J., Smith A.M., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 13124–13129. [CrossRef] [PubMed] [Google Scholar]
  77. Weber A.P.M., Solute transporters as connecting elements between cytosol and plastid stroma, Curr. Opin. Plant Biol. 7 (2004) 247–253. [CrossRef] [PubMed] [Google Scholar]
  78. Lecourieux F., Lecourieux D., Vignault C., Delrot S., A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells, Plant Physiol. 152 (2010) 1096–1106. [CrossRef] [PubMed] [Google Scholar]
  79. Farre E.M., Fernie A.R., Willmitzer L., Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism, Metabolomics 4 (2008) 161–170. [CrossRef] [PubMed] [Google Scholar]
  80. Schaffer A.A., Petreikov M., Inhibition of fructokinase and sucrose synthase by cytosolic levels of fructose in young tomato fruit undergoing transient starch synthesis, Physiol. Plant. 101 (1997) 800–806. [CrossRef] [Google Scholar]
  81. Roitsch T., Gonzalez M.C., Function and regulation of plant invertases: sweet sensations, Trends Plant Sci. 9 (2004) 606–613. [CrossRef] [PubMed] [Google Scholar]
  82. Ruan Y.L., Jin Y., Yang Y.J., Li G.J., Boyer J.S., Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat, Mol. Plant 3 (2010) 942–955. [CrossRef] [PubMed] [Google Scholar]
  83. Halford N.G., Purcell P.C., Hardie D.G., Is hexokinase really a sugar sensor in plants?, Trends Plant Sci. 4 (1999) 117–120. [CrossRef] [PubMed] [Google Scholar]
  84. Rolland F., Baena-Gonzalez E., Sheen J., Sugar sensing and signalling in plants: Conserved and novel mechanisms, Annu. Rev. Plant Biol. 57 (2006) 675–709. [CrossRef] [PubMed] [Google Scholar]
  85. Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y., Ratner K., Levine A., Granot D., Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence, Plant Cell 11 (1999) 1253–1266. [CrossRef] [PubMed] [Google Scholar]
  86. Roessner-Tunali U., Hegemann B., Lytovchenko A., Carrari F., Bruedigam C., Granot D., Fernie A.R., Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development, Plant Physiol. 133 (2003) 84–99. [CrossRef] [PubMed] [Google Scholar]
  87. Smith A.M., Prospects for increasing starch and sucrose yields for bioethanol production, Plant J. 54 (2008) 546–558. [CrossRef] [PubMed] [Google Scholar]
  88. Kortstee A.J., Appeldoorn N.J.G., Oortwijn M.E.P., Visser R.G.F., Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives, Planta 226 (2007) 929–939. [CrossRef] [PubMed] [Google Scholar]
  89. Luengwilai K., Tananuwong K., Shoemaker C.F., Beckles D.M., Starch molecular structure shows little association with fruit physiology and starch metabolism in tomato, J. Agric. Food Chem. 58 (2010) 1275–1282. [CrossRef] [PubMed] [Google Scholar]
  90. Stark D.M., Timmerman K.P., Barry G.F., Preiss J., Kishore G.M., Regulation of the amount of starch in plant-tissues by Adp glucose pyrophosphorylase, Science 258 (1992) 287–292. [CrossRef] [PubMed] [Google Scholar]
  91. Obiadalla-Ali H., Understanding of carbon partitioning in tomato fruit, Max-Planck Inst. Mol. Plant Physiol., Golm, Ger., 2003. [Google Scholar]
  92. Gao Z.F., Sagi M., Lips S.H., Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity, Plant Sci. 135 (1998) 149–159. [CrossRef] [Google Scholar]
  93. Yin Y.G., Kobayashi Y., Sanuki A., Kondo S., Fukuda N., Ezura H., Sugaya S., Matsukura C., Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ’Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner, J. Exp. Bot. 61 (2010) 563–574. [CrossRef] [PubMed] [Google Scholar]
  94. Centeno D.C., Osorioa S., Nunes-Nesi A., Bertolo A.L.F., Carneiro R.T., Araújo W.L., Steinhauser M.-C., Michalska J., Rohrmann J., Geigenberger P., Olivera S.N., Stitt M., Carrari F., Rose J.K.C., Fernie A.R., Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening, Plant Cell 23 (2011) 162–184. [CrossRef] [PubMed] [Google Scholar]
  95. Anon., United States standards for grades of fresh tomatoes, USDA, Wash. DC, U.S.A., 1991. [Google Scholar]
  96. Chetelat R.T., Deverna J.W., Bennett A.B., Effects of the Lycopersicon chmielewskii sucrose accumulator gene (Sucr) on fruit yield and quality parameters following introgression into tomato, Theor. Appl. Genet. 91 (1995) 334–339. [PubMed] [Google Scholar]
  97. Levin I., Lalazar A., Bar M., Schaffer A.A., Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit, Ind. Crop. Prod. 20 (2004) 29–36. [CrossRef] [Google Scholar]
  98. Clarke M., Carbohydrates, industrial, Wiley-VCH, N.Y., U.S.A., 1995. [Google Scholar]
  99. Luengwilai K., Sukjamsai K., Kader A.A., Responses of ’Clemenules Clementine’ and ’W. Murcott’ mandarins to low oxygen atmospheres, Postharvest Biol. Technol. 44 (2007) 48–54. [CrossRef] [Google Scholar]
  100. Luengwilai K., Beckles D.M., Climacteric ethylene is not required for initiating chilling injury in tomato (Solanum lycopersicum L.), J. Stored Prod. Postharvest Res. 1 (2010) 1. [Google Scholar]
  101. D’Aoust M.A., Yelle S., Nguyen-Quoc B., Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit, Plant Cell 11 (1999) 2407–2418. [CrossRef] [PubMed] [Google Scholar]
  102. Chengappa S., Guilleroux M., Phillips W., Shields R., Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit, Plant Mol. Biol. 40 (1999) 213–221. [CrossRef] [PubMed] [Google Scholar]
  103. Amemiya T., Kanayama Y., Yamaki S., Yamada K., Shiratake K., Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation, Planta 223 (2006) 1272–1280. [CrossRef] [PubMed] [Google Scholar]
  104. Goren S., Huber S.C., Granot D., Comparison of a novel tomato sucrose synthase, SlSUS4, with previously described SlSUS isoforms reveals distinct sequence features and differential expression patterns in association with stem maturation, Planta 223 (2011) 1011–1023. [CrossRef] [Google Scholar]
  105. Carrari F., Baxter C., Usadel B., Urbanczyk-Wochniak E., Zanor M.-I., Nunes-Nesi A., Nikiforova V., Centeno D., Ratzka A., Pauly M., Sweetlove L.J., Fernie A.R., Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior, Plant Physiol. 142 (2006) 1380–1396. [CrossRef] [PubMed] [Google Scholar]
  106. Schaffer A.A., Petreikov M., Sucrose to starch metabolism in tomato fruit undergoing transient starch accumulation, Plant Physiol. 113 (1997) 739–746. [PubMed] [Google Scholar]