Free Access
Issue
Fruits
Volume 68, Number 5, September-October 2013
Page(s) 397 - 408
DOI https://doi.org/10.1051/fruits/2013084
Published online 12 September 2013
  1. Kaur C., Kapoor H.C., Antioxidants in fruits and vegetables - the millennium's health, Int. J. Food Sci. Technol. 36 (2001) 703–725. [CrossRef] [Google Scholar]
  2. Pinto M.S., Shetty K., Health benefits of berries for potential management of hyperglycemia and hypertension, in: Flavor and health benefits of small fruits, ACS Symp. Ser., Am. Chem. Soc., Wash. D.C., U.S.A., 2010. [Google Scholar]
  3. Anon., The global burden of disease: 2004 update, World Health Organ. (WHO), Switz., 2008. [Google Scholar]
  4. Pennington T.D., Sarukhán J., Árboles tropicales de México. Manual para la identificación de las principales especies, Univ. Nac. Autón. Méx., Fac. Cienc. Econ., Méx. D.F., 2005. [Google Scholar]
  5. Parrotta J., Pithecellobium dulce (Roxb.) Benth. Guamuchil, USDA For. Serv., South. For. Exp. Stn., Inst. Trop. For., New-Orleans, La., U.S.A., 1991. [Google Scholar]
  6. Monnroy R., Colín H., El guamúchil Phithecellobium dulce (Roxb.) Benth, un ejemplo de uso múltiple, Madera Boques 10 (2004) 35–53. [Google Scholar]
  7. Sagumaran M., Vetrichelvan T., Pithecellobium dulce Benth - a review, Pharm. Rev. 6 (2008). [Google Scholar]
  8. Gambhir N.V., Bhaskar V.V., HTPLC analysis of vitamin C from Pithecellobium dulce, Benth (Fabaceae), J. Pharm. Res. 4 (2011) 1197–1198. [Google Scholar]
  9. Manna P., Bhattacharyya S., Das J., Ghosh J., Sil P.C., Phytomedicinal role of Pithecellobium dulce against CCl(4)-mediated hepatic oxidative impairments and necrotic cell death, Evid. Based Complement Altern. Med. (2011) 1–17. [Google Scholar]
  10. Megala J., Geetha A., Free radical-scavenging and H+, K+-ATPase inhibition activities of Pithecellobium dulce, Food Chem. 121 (2010) 1120–1128. [CrossRef] [Google Scholar]
  11. Harborne J.B., Phytochemical methods, Chapman and Hall, N. Y., U.S.A., 1984. [Google Scholar]
  12. Anon., Official methods of analysis, Assoc. Off. Anal. Chem. Inc. (AOAC), Va., U.S.A., 1990. [Google Scholar]
  13. Gökmen V., Kahraman N., Demir N., Acar J., Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables, J. Chromatogr. A 881 (2000) 309–316. [CrossRef] [PubMed] [Google Scholar]
  14. Alcántar-González G., Sandoval-Villa M., Procedimientos analíticos, in: Alcántar-González G., Sandoval-Villa M. (Eds.), Manual de análisis químicos de tejido vegetal, Soc. Mex. Cienc. Suelo, A.C., Méx., D.F., 1999. [Google Scholar]
  15. Pío-León J.F., López-Angulo G., Paredes-López O., Uribe-Beltran M.d.J., Díaz-Camacho S.P., Delgado-Vargas F., Physicochemical, nutritional and antibacterial characteristics of the fruit of Bromelia pinguin L., Plant Foods Hum. Nutr. 64 (2009) 181–187. [CrossRef] [PubMed] [Google Scholar]
  16. Park P.W., Goins R.E., In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods, J. Am. Oil Chem. Soc. 59 (1994) 1262–1266. [Google Scholar]
  17. Waterhouse A.L., Determination of total phenolics, in: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Smith D.M., Sporns P. (Eds.), Current protocols in food analytical chemistry, John, Wiley & Sons, Inc., Hoboke,; New-Jersey, U.S.A., 2002. [Google Scholar]
  18. Wolfe K., Wu X., Liu R.H., Antioxidant activity of apple peels, J. Agric. Food Chem. 51 (2003) 609–614. [CrossRef] [PubMed] [Google Scholar]
  19. Price M., van Scoyoc S., Butler L., A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain, J. Agric. Food Chem. 26 (1978) 1214–1218. [CrossRef] [Google Scholar]
  20. Giusti M., Wrolstad R.E., Characterization and measurement of anthocyanins by UV-visible spectroscopy, in: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Smith D.M., Sporns P. (Eds.), Current protocols in food analytical chemistry, John, Wiley & Sons, Inc., Wash., D.C., U.S.A., 2002. [Google Scholar]
  21. Liu L.X., Sun Y., Laura T., Liang X.F., Ye H., Zeng X.X., Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng, Food Chem. 112 (2009) 35–41. [CrossRef] [Google Scholar]
  22. Lim Y.Y., Lim T.T., Tee J.J., Antioxidant properties of several tropical fruits: A comparative study, Food Chem. 107 (2007) 1003–1008. [CrossRef] [Google Scholar]
  23. Pinto M.S., Kwon Y.I., Apostolidis E., Lajolo F.M., Genovese M.I., Shetty K., Functionality of bioactive compounds in Brazilian strawberry (Fragaria × ananassa Duch.) cultivars: evaluation of hyperglycemia and hypertension potential using in vitro models, J. Agric. Food Chem. 56 (2008) 4386–4392. [CrossRef] [PubMed] [Google Scholar]
  24. Kim J.S., Hyun T.K., Kim M.J., The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on a-glucosidase and a-amylase activities, Food Chem. 124 (2011) 1647–1651. [CrossRef] [Google Scholar]
  25. Kado N.Y., Langley D., Eisenstadt E., A simple modification of the Salmonella liquid incubation assay. Increased sensitivity for detecting mutagens in human urine, Mutat. Res. 121 (1983) 25–32. [CrossRef] [PubMed] [Google Scholar]
  26. Anon., USDA nutrient database for standard reference, Release 22, USDA, Dep. Agric., Agric. Res. Serv., Wash., D.C., U.S.A., 2009. [Google Scholar]
  27. Anon., Food and nutrition information center: dietary reference intakes, FNB/FNIC, Food Nutr. Board, Wash., D.C., U.S.A., 2010. [Google Scholar]
  28. Elleuch M., Bedigian D., Roiseux O., Besbes S., Blecker C., Attia H., Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review, Food Chem. 124 (2001) 411–421. [CrossRef] [Google Scholar]
  29. Rao G.N., Nagender A., Satyanarayana A., Rao D.G., Preparation, chemical composition and storage studies of quamachil (Pithecellobium dulce L.) aril powder, J. Food Sci. Tech. Mysore. 48 (2011) 90–95. [CrossRef] [Google Scholar]
  30. Everette J.D., Bryant Q.M., Green A.M., Abbey Y.A., Wangila G.W., Walker R.B., Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent, J. Agric. Food Chem. 58 (2010) 8139–8144. [CrossRef] [PubMed] [Google Scholar]
  31. Nour V., Trandafir I., Ionica M.E., Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars, Fruits 66 (2011) 353–362. [CrossRef] [EDP Sciences] [Google Scholar]
  32. Szajdek A., Borowska E.J., Bioactive compounds and health-promoting properties of berry fruits: a review, Plant Foods Hum. Nutr. 63 (2008) 147–156. [CrossRef] [PubMed] [Google Scholar]
  33. Cayupán Y.S., Ochoa M.J., Nazareno M.A., Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive compound contents during ripening process, Food Chem. 126 (2011) 514–519. [CrossRef] [Google Scholar]
  34. Rop O., Jurikova T., Mlcek J., Kramarova D., Sengee Z., Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains, Sci. Hortic. 122 (2009) 545–549. [CrossRef] [Google Scholar]
  35. McDougall G.J., Shipiroo F., Dobson O., Smith P., Blake A., Stewart D., Different polyphenolic components of soft fruits inhibit a-amylase and a-glucosidase, J. Agric. Food Chem. 53 (2005) 2760–2766. [CrossRef] [PubMed] [Google Scholar]
  36. Wiese S., Gärtner S., Rawel H.M., Winterhalter P., Kulling S.E., Protein interactions with cyanidin-3-glucoside and its influence on a-amylase activity, J. Sci. Food Agric. 89 (2009) 33–40. [CrossRef] [Google Scholar]
  37. Delorme S., Chiasson J.L., Acarbose in the prevention of cardiovascular disease in subjects with impaired glucose tolerance and type 2 diabetes mellitus, Curr. Opin. Pharm. 5 (2005) 184–189. [CrossRef] [Google Scholar]
  38. Cariello A., Cardiovascular effects of acute hyperglycaemia: pathophysiological underpinnings, Diab. Vasc. Dis. Res. 5 (2005) 260–268. [CrossRef] [Google Scholar]
  39. Raju B.C., Tiwari A.K., Kumar J.A., Ali A.Z., Agawane S.B., Saidachary G., Madhusadana K., a-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives, Bioorg. Med. Chem. 18 (2010) 358–365. [CrossRef] [PubMed] [Google Scholar]
  40. Wall E.E., Wani M.C., Hughes T.J., Taylor H., Plant antimutagenic agents, 1. General bioassay and isolation procedures, J. Nat. Prod. 51 (1988) 866–873. [CrossRef] [PubMed] [Google Scholar]
  41. Purohit V., Basu A.K., Mutagenicity of nitroaromatic compounds, Chem. Res. Toxicol. 13 (2000) 673–692. [CrossRef] [PubMed] [Google Scholar]
  42. Santos-Cervantes M.E., Ibarra-Zazueta M.E., Loarca-Piña G., Paredes-López O., Delgado-Vargas F., Antioxidant and antimutagenic activities of Randia echinocarpa fruit, Plant Foods Hum. Nutr. 62 (2007) 71–77. [CrossRef] [PubMed] [Google Scholar]
  43. González de Mejía E., Castaño-Tostado E., Loarca-Piña G., Antimutagenic effects of natural phenolic compounds in beans, Mutat. Res. 441 (1999) 1–9. [CrossRef] [PubMed] [Google Scholar]