Free Access
Volume 68, Number 5, September-October 2013
Page(s) 423 - 434
Published online 12 September 2013
  1. Nwangburuka C.C., Kehinde O.B., Ojo D.K., Denton O.A., Popoola A.R., Morphological classification of genetic diversity in cultivated okra, Abelmoschus esculentus (L.) Moench using principal component analysis (PCA) and single linkage cluster analysis (SLCA), Afr. J. Biotechnol. 10 (2011) 11165–11172. [Google Scholar]
  2. Debnath S.C., Teixeira da Silva J.A., Strawberry culture in vitro: applications in genetic transformation and biotechnology, Fruit Veg. Cereal Sci. Biotechnol. 1(2007) 1–12. [Google Scholar]
  3. Hancock J.F., Mass J.L., Shanks C.H., Breen P.J., Luby J.J., Strawberries (Fragaria), Acta Hortic. 290 (1991) 491–454. [Google Scholar]
  4. Azodanlou R., Darbellay C., Luisier J.L., Villettaz J.C., Amado R., Quality assessment of strawberries (Fragaria species), J. Agric. Food Chem. 51 (2003) 715–721. [CrossRef] [PubMed] [Google Scholar]
  5. Tulipani S., Mezzetti B., Capocasa F., Bompadre S., Beekuilder J., Ric de Vos C.H., Capanoglu E., Bovy A., Battino M., Antioxidants, phenolic compounds and nutritional quality of different strawberry genotypes, J. Agric. Food Chem. 56 (2008) 696–704. [CrossRef] [PubMed] [Google Scholar]
  6. Sun J., Chu Y.F., Wu X., Liu R.H., Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50 (2002) 7449–7454. [CrossRef] [PubMed] [Google Scholar]
  7. Vinson J.A., Su X., Zubik L., Bose P., Phenol antioxidant quantity and quality in foods: Fruits, J. Agric. Food Chem. 49 (2001) 5315–5321. [CrossRef] [PubMed] [Google Scholar]
  8. Naumann W.D., Seipp D., Erdbeeren, Ulmer Verlag, Stuttgart, Ger., 1989, pp. 32–40. [Google Scholar]
  9. Kallio H., Hakala M., Pelkkikangas A.M., Lapvetelainen A., Sugars and acids of strawberry varieties, Eur. Food Res. Technol. 212 (2000) 81–85. [CrossRef] [Google Scholar]
  10. Gomez K.A., Gomez A.A., Statistical procedures for agricultural research, 2nd Ed., John Wiley and Sons Inc., N.Y., U.S.A., 1994. [Google Scholar]
  11. Hannum S.M., Potential impact of strawberries on human health: A review of the science, Crit. Rev. Food Sci. Nutr. 44 (2009) 1–17. [CrossRef] [Google Scholar]
  12. Basu A., Rhone M., Lyons T.J., Berries: emerging impact on cardiovascular health, Nutr. Rev. 68 (2012) 168–177. [CrossRef] [Google Scholar]
  13. Arunachalam G., Genetic distances in plant breeding, Ind. J. Genet. 41 (1981) 226–236. [Google Scholar]
  14. Tadeu V. de Resende J., Camargo L.K.P., Argandoña E.J.S., Marchese A., Camargo C.K., Sensory analysis and chemical characterization of strawberry fruits, Hortic. Bras. 26 (2008) 25–39. [Google Scholar]
  15. Hoppula K.B., Karhu S.T., Strawberry fruit quality responses to the production environment, J. Food Agric. Environ. 4(2006) 166–170. [Google Scholar]
  16. Jouquand C., Chandler C., Plotto A., Goodner K., A sensory and chemical analysis of fresh strawberries over harvest dates and seasons reveals factors that affect eating quality, J. Am. Soc. Hortic. Sci. 133 (2008) 859–867. [Google Scholar]
  17. Aaby K., Skrede G., Wrolstad R.E., Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragraria ananassa), J. Agric. Food Chem. 3 (2005) 4032–4040. [CrossRef] [Google Scholar]
  18. Singleton V.L., Rossi J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic. 16 (1965) 144–158. [Google Scholar]
  19. Yen G.C., Chen H.Y., Antioxidant activity of various tea extracts in relation to their antimutagenicity, J. Agric. Food Chem. 43 (1995) 27–32. [CrossRef] [Google Scholar]
  20. Benzie I., Strain J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay, Anal. Biochem. 239 (1996) 70–76. [CrossRef] [PubMed] [Google Scholar]
  21. Anon., Official Methods of Analysis, Assoc. Off. Anal. Chem. (AOAC), Ed. 16th, Arlingt., Va., U.S.A., 1994, pp. 2209. [Google Scholar]
  22. Kim D.O., Jeong S.W., Lee C.Y., Antioxidant capacity of phenolic phytochemicals from various cultivars of plums, Food Chem. 81 (2003) 321–326. [CrossRef] [Google Scholar]
  23. Robinson W.B., Stotz E., The indophenolxylene extraction method for ascorbic acid and modifications for interfering substances, J. Biol. Chem. 160 (1945) 217–225. [Google Scholar]
  24. Shin Y., Liu R.H., Nock J.F., Watkins C.B., Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit, Postharvest Biol. Technol. 49 (2008) 201–209. [CrossRef] [Google Scholar]
  25. Anon., Institute SAS enterprise guide, Version 9.2., SAS Inst., Cary, N.C., U.S.A., 2012 [Google Scholar]
  26. Meyer A.S., Yi O.-S., Pearson D.A., Waterhouse A.L., Frankel E.N., Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera), J. Agric. Food Chem. 5 (1997) 1638–1643. [CrossRef] [Google Scholar]
  27. Giovanelli G., Buratti S., Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties, Food Chem. 112 (2009) 903–908. [CrossRef] [Google Scholar]
  28. Heinonen I.M., Meyer A.S., Frankel E.N., Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation, J. Agric. Food Chem. 46 (1998) 4107–4112. [CrossRef] [Google Scholar]
  29. Prior R.L., Cao G., Martin A., Sofic E., McEwan J., O’Brien C., Lischner N., Ehlenfeldt M., Kalt W., Krever G., Mainland C.M., Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of Vaccinium species, J. Agric. Food Chem. 46 (1998) 2686–2693. [CrossRef] [Google Scholar]
  30. Kalt W., Forney C.F., Martin A., Prior R.L., Antioxidant capacity, vitamin C, phenolics and anthocyanins after fresh storage of small fruits, J. Agric. Food Chem. 47 (1999) 4638–4644. [CrossRef] [PubMed] [Google Scholar]
  31. Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrolstad R. E., Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes, J. Agric. Food Chem. 50 (2002) 519–525. [CrossRef] [PubMed] [Google Scholar]
  32. Taruscio T.G., Barney D.L., Exon J., Content and profile of flavonoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of Northwest Vaccinium berries, J. Agric. Food Chem. 52 (2004) 3169–3176. [CrossRef] [PubMed] [Google Scholar]
  33. Meyers K.J., Watkins C.B., Pritts M.P., Liu R.H., Antioxidant and antiproliferative activities of strawberries, J. Agric. Food Chem. 51 (2003) 6887–6892. [CrossRef] [PubMed] [Google Scholar]
  34. Cordenunsi B.R., Nascimento J.R.O., Genovese M.I., Lajolo F.M., Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil, J. Agric. Food Chem. 50 (2002) 2581–2586. [CrossRef] [PubMed] [Google Scholar]
  35. Skrede G., Wrolstad R.E., Durst R.W., Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.), J. Food Sci. 65 (2000) 357–364. [CrossRef] [Google Scholar]
  36. Wang S.Y., Jiao H., Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen, J. Agric. Food Chem. 48 (2000) 5677–5684. [CrossRef] [PubMed] [Google Scholar]