Free Access
Issue
Fruits
Volume 70, Number 3, May-June 2015
Page(s) 153 - 161
DOI https://doi.org/10.1051/fruits/2015006
Published online 22 April 2015
  1. Wei J., Ma F., Guan J., Yuan J., Zhu X., Cell wall metabolism and its regulation in harvested pyrus ussuriensis maxin. cv. jingbaili fruit during ripening, Scientia Agri. Sin. 42 (2009) 2987–2996. [Google Scholar]
  2. Brummell D.A., Harpster M.H., Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants, Plant Mol. Biol. 47 (2001) 311–340. [CrossRef] [PubMed] [Google Scholar]
  3. Brummell D.A., Cell wall disassembly in ripening fruit, Funct. Plant Biol. 33 (2006) 103–119. [CrossRef] [Google Scholar]
  4. Wei J., Ma F., Shi S., Qi X., Zhu X., Yuan J., Changes and the postharvest regulation in the activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit, Postharvest Biol. Technol. 56 (2010) 147–154. [CrossRef] [Google Scholar]
  5. Ng J.K.T., Schröder R., Sutherland P.W., Hallett I.C., Hall M.I., Prakash R., Smith B.G., Melton L.D., Johnston J.W., Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth, BMC Plant Biol. 13 (2013) 183–199. [CrossRef] [PubMed] [Google Scholar]
  6. Yan J., Zhang X., Long C., The molecular biology basis of cell wall structure and function in higher plants, in Yu S. and Tang Z. (Eds), Plant physiology and molecular biology, 2nd ed., Science publisher in Beijing, 1998, pp. 93–112. [Google Scholar]
  7. Giovannoni J., Molecular biology of fruit maturation and ripening, Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 725–749. [CrossRef] [PubMed] [Google Scholar]
  8. Almeida D.P.F., Huber D.J., Polygalacturonase-mediated dissolution and depolymerization of pectins in solutions mimicking the pH and mineral composition of tomato apoplast, Plant Sci. 172 (2007) 1087–1094. [CrossRef] [Google Scholar]
  9. Baldwin L., Domon J., Klimek J.F., Sellier F., Gille, F., Pelloux J., Lejeune-Hénaut I., Carpita N.C., Rayon C., Structural alteration of cell wall pectins accompanies pea development in response to cold, Phytochemistry 104 (2014) 37–47. [CrossRef] [PubMed] [Google Scholar]
  10. Vicente A.R., Saladie M., Rose J.K.C., Labavitch J.M. The linkage between cell wall metabolism and fruit softening: looking to the future, J. Sci. Food Agric. 87 (2007) 1435–1448. [CrossRef] [Google Scholar]
  11. Saladié M., Matas A.J., Isaacson T., Jenks M.A., Goodwin S.M., Niklas K.J., Ren X., Labavitch J.M., Shackel K.A., Fernie A.R., Lytovchenko A., Watkins C.B., Rose, J.K.C. A reevaluation of the key factors that influence tomato fruit softening and integrity, Plant Physiol. 144 (2007) 1012–1028. [CrossRef] [PubMed] [Google Scholar]
  12. Liu Y., Jiao X., Qiu H., Liu W., Xu R., Lin J., Shi J., Postharvest physiological changes of apple and effect of postharvest treatment on its storage quality, Acta Phytophysiol. Sin. 2 (1979) 7–23. [Google Scholar]
  13. Mann H.S., Alton J.J., Kim S.H., Tong C.B.S., Differential expression of cell wall-modifying genes and novel cDNAs in apple fruit during storage, J. Amer. Soc. Hort. Sci. 133 (2008) 152–157. [Google Scholar]
  14. Martínez G.A., Civello P.M., Effect of heat treatments on gene expression and enzyme activities associated to cell wall degradation in strawberry fruit, Postharvest Biol. Technol. 49 (2008) 38–45. [CrossRef] [Google Scholar]
  15. Cybulska J., Zdunek A., Koziol A., The self-assembled network and physiological degradation of pectins in carrot cell walls, Food Hydrocolloids (2014) 1–10. [Google Scholar]
  16. Xue B., Mao Z., Shu H., Changes in glycosidases and cellulase activities, and cell wall composition in strawberry fruits during development and ripening, J. Plant Physiol. Mol. Biol. 32 (2006) 363–368. [Google Scholar]
  17. Brummell D.A., Dal Cin V., Crisosto C.H., Labavitch J.M., Cell wall metabolism during maturation, ripening and senescence of peach fruit, J. Exp. Bot. 55 (2004) 2029–2039. [CrossRef] [PubMed] [Google Scholar]
  18. Gross K.C., A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide, Hort. Sci. 17 (1982) 933–934. [Google Scholar]
  19. Lin T.P., Liu C.C., Chen S.W., Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino achenes, Plant Physiol. 91 (1989) 1445–1453. [CrossRef] [PubMed] [Google Scholar]
  20. Billy L., Mehinagic E., Royer G., Renard C.M.G.C., Arvisenet G., Prost C., Jourjon F., Relationship between texture and pectin composition of two apple cultivars during storage, Postharvest Biol. Technol. 47 (2008) 315–324. [CrossRef] [Google Scholar]
  21. Bouranis D.L., Niavis C.A., Cell wall metabolism in growing and ripening store fruits, Plant Cell Physiol. 33 (1992) 999–1008. [Google Scholar]
  22. Posé S., García-Gago J.A., Santiago-Doménech N., Pliego-Alfaro F., Quesada M.A., Mercado J.A., Strawberry fruit softening: role of cell wall disassembly and its manipulation in transgenic plants, Genes, Genomes and Genomics, 5 (2011) 40–48. [Google Scholar]
  23. Zeng X., Zhang G., Li C., Luo N., Hu Q., Studies on cell wall enzymes of navel orange (Citrus sinesis) fruit, Subtrop. Plant Sci. 35 (2006) 12–16. [Google Scholar]
  24. Xue B., Shu H., Changes of cell wall and hydrolases in the fruit of two cultivars of Feicheng peach during development and ripening, Acta Hortic. Sin. 31 (2004) 499-501. [Google Scholar]
  25. Goulao L.F., Cosgrove D.J., Oliveira C.M., Cloning, characterisation and expression analyses of cDNA clones encoding cell wall-modifying enzymes isolated from ripe apples. Postharvest Biol. Technol. 48 (2008) 37–51. [CrossRef] [Google Scholar]
  26. Ross G.S., Wegrzyn T., MacRae E.A., Redgwell R.J., Apple β-Galactosidase activity against cell wall polysaccharides and characterization of a related cDNA clone, Plant Physiol. 106 (1994) 521–528. [CrossRef] [PubMed] [Google Scholar]
  27. Smith D.L., Gross K.C., A family of at least seven β-galactosidase genes is expressed during tomato fruit development, Plant Physiol 123 (2000) 1173–1183. [CrossRef] [PubMed] [Google Scholar]
  28. Sozzi G.O., Fraschina A.A., Navarro A.A., α-L-Arabinofuranosidase activity during development and ripening of normal and ACC synthase antisense tomato fruit, HortScience 37 (2002) 564–566. [Google Scholar]
  29. Itai A., Ishihara K., Bewley J.D., Characterization of expression and cloning of beta-D-xylosidase and alpha-L- arabinofuranosidase in developing and ripening tomato (Lycopersicon esculentum Mill.) fruit, J. Exp. Bot. 54 (2003) 2615–2622. [CrossRef] [PubMed] [Google Scholar]
  30. Gwanpua S.G., Buggenhout S.V., Verlinden B.E., Christiaens S., Shpigelman A., Vicent V., Kermani Z.J., Nicolai B.M., Hendrickx M., Geeraerd A., Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples, Food Chem. 158 (2014) 283–291. [CrossRef] [PubMed] [Google Scholar]
  31. Goulao L.F., Santos J., Sousa I., Oliveira C.M., Patterns of enzymatic activity of cell wall modifying enzymes during growth and ripening of apples, Postharvest Biol. Technol. 43 (2007) 307–318. [CrossRef] [Google Scholar]