Free Access
Volume 70, Number 4, July-August 2015
Page(s) 239 - 248
Published online 26 June 2015
  1. Samba-Murthy A.A.S.S., Subrahmanyan N.S., Fruits, in: Johry V.S. (Ed.), A Text Book of Economic Botany, Wiley, New Delhi, India, 1989. [Google Scholar]
  2. Sagrawat H., Mann A.S., Kharya M.D., Pharmocological potential of Eugenia Jambolana: A review, Phcog. Mag. 2 (2006) 96–105. [Google Scholar]
  3. Khan S., Vaishali, Sharma V., Genetic differentiation and diversity analysis of medicinal tree Syzygium cumini (Myrtaceae) from ecologically different regions of India, Physiol. Mol. Biol. Plants 16(2) (2010) 149–158. [CrossRef] [PubMed] [Google Scholar]
  4. Malik M.A., Javed M.A., Ahmad S., Sharif N., Aziz M., Studies on different softwood grafting techniques in jamun, J. Agric. Res. 51(2) (2013) 169–174. [Google Scholar]
  5. Mohamed Z., Ho W.S., Pang, S.L., Ahmad F.B., EMS-induced mutagenesis and DNA polymorphism assessment through ISSR markers in Neolamarckia cadamba (kelampayan) and Leucaena leucocephala (petai belalang), Eur. J. Exp. Biol. 4(4) (2014)156–163. [Google Scholar]
  6. Manjaya J.G., Nandanwar R.S., Genetic improvement of soybean variety JS 80-21through induced mutations, Plant Mutation Reports 1 (3) (2007) 36–40. [Google Scholar]
  7. Wattoo J.I., Aslam K., Shah S.M., Shabir G., Sabar M., Naveed S.A., Waheed R., Samiullah, Muqaddasi Q.H., Arif M., 2013, Ethyl methane sulphonate (EMS) induced mutagenic attempts to create genetic variability in Basmati rice, Afr. J. Water Conservation and Sustainability 1 (3) (2013) 45–48. [Google Scholar]
  8. McCallum C.M., Comai L., Greene E.A., Henikoff S., Targeting induced local lesions in genomes (Tilling) for plant functional genomics, Plant Physiol. 123 (2000) 439–442. [CrossRef] [PubMed] [Google Scholar]
  9. Murali K.M., Jeevanandam V., Shuye J., Srinivasan R., Impact of colchicine treatment on Sorghum bicolour BT× 623, Mol. Plant Breed. 4(15) (2013) 128–135. [Google Scholar]
  10. Singh S.V., Singh D.B., Yadav M., Roshan R.K., Pebam N., Effect of EMS on germination, growth and sensitivity of papaya (Carica papaya L.) cv. Farm Selection-1, Acta Hort. 851 (2010) 113–116. [Google Scholar]
  11. Kaur S., Rattanpal H.S., Effect of mutagens on in vitro seed germination and growth of rough lemon (Citrus jambhiri) seedlings, Ind. J. Agric. Sci. 80 (9) (2010) 773–776. [Google Scholar]
  12. Roychowdhury R., Tah J., Chemical mutagenic action on seed germination and related agro-metrical traits in M1 Dianthus generation, Curr. Bot. 2(8) (2011) 19–23. [Google Scholar]
  13. Ramdas, Dhingra G.K., Pokhriyal P., Rather M.A., Seed germination and survival percentage of control and colchicine induced plants of Zanthoxylum armatum Roxb. (Rutaceae), ARPN J. Sci. Technol. 2(1) (2012) 15–20. [CrossRef] [Google Scholar]
  14. Gera M., Ginwal H.S., Preliminary observations on field trial of root trainer raised seedlings, Ind. Fores. 128 (1) (2002) 19–26. [Google Scholar]
  15. Baiyeri K.P., Response of Musa species to macro-propagation- II: The effects of genotype, initiation and weaning substrates on sucker growth and quality in the nursery, Afr. J. Biotechnol. 4 (2005) 229–234. [Google Scholar]
  16. Bunt A.C., Media and mixes for container-grown plants, 1st Ed., Springer, London, UK, 1988. [Google Scholar]
  17. Gupta Y.C., Le-Quec D., Dhiman S.R., Jain R., Standardisation of growing media under protected environment of gerbera in mid-hill of Himachal Pradesh, Jr. Ornamental Hort. 7 (2004) 99–102. [Google Scholar]
  18. Bhagat S., Thakur A., Dhaliwal H.S., Organic amendments influence growth, buddability and budding success in rough lemon (Citrus jambhiri Lush.), Biol. Agric. Hortic. 29 (1) (2013) 46–57. [CrossRef] [Google Scholar]
  19. Prabhu S.R., Thomas G.V., Biological conversion of coir pith into a value-added organic resource and its application in agri-horticulture: current status, prospects and perspective, J. Plantation Crops 30 (1) (2002) 1–17. [Google Scholar]
  20. Yau P.Y., Murphy R.J., Enhanced biodegradation of coco-peat by soft rot fungi, in: 29th Annual Meeting of International Research Group on Wood Preservation, Maastricht, The Netherlands 14-19 June, 1998. [Google Scholar]
  21. Houssard C., Escarré J., The effects of seed weight on growth and competitive ability of Rumex acetosella from two successional old-fields, Oecologia 86 (1991) 236–242. [CrossRef] [PubMed] [Google Scholar]
  22. Hassanein A.M.A., Improving seed germination and seedling growth of some economically important trees by seed treatments and growing media, J. Hortic. Sci. Ornam. Plants 2(1) (2010) 24–31. [Google Scholar]
  23. Bewly J.D., Black B.M., Germination of seeds, in: Khan A.A. (Ed.), Physiology and biochemistry of seed germination, Springer-Verlag, New York, USA, 1982. [Google Scholar]
  24. Hiscox J.D., Israelstam G.F., A method for the extraction of chlorophyll from leaf tissue without maceration, Can. J. Bot. 57 (1979) 1332–1334. [CrossRef] [Google Scholar]
  25. Yemm E.W., Willis A.J., The estimation of carbohydrates in plant extracts by anthrone, Biochem. J. 57 (1954) 508–514. [PubMed] [Google Scholar]
  26. Singleton V.L., Rossi J.A., A colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Amer. J. Enol. Viticul., 16 (1965) 144–158. [Google Scholar]
  27. Benzie I.F., Strain J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay, Anal. Biochem. 239 (1996) 70–76. [CrossRef] [PubMed] [Google Scholar]
  28. Shah T.M., Mirza J.I., Haq M.A., Atta B.M., Radio sensitivity of various chickpea genotypes in M1 generation – laboratory studies, Pak. J. Bot. 40 (2008) 649–665. [Google Scholar]
  29. Evans M.R., Konduru S., Stamps R.H., Source variation in physical and chemical properties of coconut coir dust, HortScience 31 (1996) 965–967. [Google Scholar]
  30. Verhagen J.B.G.M., Papadopoulos A.P., CEC and the saturation of the adsorption complex of coir dust, Acta Hort. 481 (1997) 151–155. [Google Scholar]
  31. Tennakoon N.A., Bandara H.S.D., Nutrient content of some locally available organic materials and their potential as alternative sources of nutrients for coconut, Cocos 15 (2003) 23–30. [Google Scholar]
  32. Utami N.W., Witjaksono, Hoesen D.S.H., Seed germination and seedling growth of ramin (Gonystylus bancanus Miq.) on various growing media, Biodiversitas 7 (2006) 264–268. [CrossRef] [Google Scholar]
  33. Trivedi D.R., Joshi A.G., Studies on seed germination of Stereospermum suaveolens with respect to different parameters, Environ. Exp. Biol. 12 (2014) 33–37. [Google Scholar]
  34. Tiwari A.K., Mishra S.K., Effect of colchicine on mitotic polyploidization and morphological characteristics of Phlox drummondi, Afr. J. Biotechnol. 11(39) (2012) 9336–9342. [CrossRef] [Google Scholar]
  35. Padavai P., Dhanavel D., Effect of EMS, DES and colchicine treatment in soybean, Crop Res. 28 (1-3) (2004) 118–120. [Google Scholar]
  36. Singh R., Kole C.R., Effect of mutagenic treatments with EMS on germination and some seedling parameters in mung bean, Crop Res. 30(2) (2005) 236–240. [Google Scholar]
  37. Khan S., Goyal S., Improvement of mung bean varieties through induced mutations, Afr. J. Plant Sci. 3(8) (2009) 174–180. [Google Scholar]
  38. Sivasubramaniam K., Selvarani K., Viability and vigor of jamun (Syzygium cumini) seeds, Braz. J. Bot. 35(4) (2012) 397–400. [CrossRef] [Google Scholar]
  39. Sharma S., Wali, V.K., Sharma M., Gupta V., Khajuria S., Cultivation of micro propagated plants of strawberry (Fragaria x ananassa duch.) cv. Chandler in specific climatic conditions of jammu: hardening and acclimatization, J. Cell Tissue Res. 12(3) (2012) 3373–3376. [Google Scholar]
  40. Bennici A., Silvia S., Bruno M., Morphogenic effect of colchicine in Cichorium intybus L. Root explants cultured in vitro, Caryologia 59(3) (2006) 284–290. [CrossRef] [Google Scholar]
  41. Martin G., Action de la colchicine sur les tissus de topinambour cultive’ in vitro. Rev. Cytol. Cytophysiol. Veg. 8 (1945) 1–34. [Google Scholar]
  42. Raufe S., Khan I.A., Khan F.A., Colchicine-induced tetraploidy and changes in allele frequencies in colchicine-treated populations of diploids assessed with RAPD markers in Gossypium arboreum L, Turk. J. Biol. 30 (2006) 93–100. [Google Scholar]
  43. Amiri S., Kazemitabaar S.K., Ranjbar G., Azadbakht M., The effect of trifluralin and colchicine treatments on morphological characteristics of jimson weed (Datura stramonium L.), Trakia J. Sci. 8(4) (2010) 47–61. [Google Scholar]
  44. Kumar A.H.V., Muralidhar T.S., Acharya S., Das M.J., Munirajappa, EMS induced morphometric biomass and phytochemical variations in Morus species (genotype RFS135), Am. J. Exp. Agric. 3(1) (2013) 43–55. [CrossRef] [Google Scholar]
  45. Zaka R., Chenal C., Misset M.T., Effect of low doses of short-term gamma radiation on growth and development through two generations of Pisum sativum, Sci. Total Envir. 320 (2004) 121–129. [CrossRef] [Google Scholar]
  46. Nazari F., Farahmand H., Khosh-Khui M., Salehi H., Effects of coir as a component of potting media on growth, flowering and physiological characteristics of hyacinth (Hyacinthus orientalis L. cv. Sonbol-e-Irani), Int. J. Agric. Food Sci. 1(2) (2011) 34–38. [Google Scholar]
  47. Zahedi A.A., Hosseini B., Fattahi M., Dehghan E., Parastar H., Madani H., Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss, Bot. Stud. 55 (2014) 1–10. [CrossRef] [Google Scholar]
  48. Mensah B.O., Akomeah P.A., Ikhajiagbe B., Ajibolu J., The effects of sodium azide and colchicine treatments on morphological and yield traits of sesame seed (Sesame indicum L.), Afr. J. Biotechnol. 6 (5) (1993) 534–538. [Google Scholar]
  49. Bernard F., Moghbel N., Hassannejad S., Treatment of licorice seeds with colchicine: changes in seedling DNA levels and anthocyanin and glycyrrhizic acid contents of derived callus cultures, Nat. Prod. Commun. 7 (11) (2012) 1457–1430. [PubMed] [Google Scholar]
  50. Warner D.A., Gerald E.E., Effects of polyploidy on photosynthesis, Photosynth. Research 35 (2) (1993) 135–147. [CrossRef] [Google Scholar]
  51. Shoresh M., Harman G.E., The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach, Plant Physiol. 147 (2008) 2147–2163. [CrossRef] [PubMed] [Google Scholar]
  52. Saikia L.R., Upadhyaya S., Antioxidant activity, phenol and flavonoid content of Asparagus racemosus Willd, a medicinal plant grown using different organic manures, Res. J. Pharm. Biol. Chem. Sci. 2 (2) (2011) 457–463. [Google Scholar]
  53. Bouvier F., Backhaus R.A., Camara B., Induction and control of chromoplast-specific carotenoid genes by oxidative stress, J. Biol. Chem. 273 (1998) 30651–30659. [CrossRef] [PubMed] [Google Scholar]
  54. Oliveira A.B., Moura C.F.H., Gomes-Filho E., Marco C.A., Urban L., The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development, Plos One 8(2) (2013) e6354. [Google Scholar]
  55. Dehghan E., Häkkinen S.T., Oksman-Caldentey K.M., Ahmadi F.S., Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.), Plant Cell Tiss. Organ Cult. 110(1) (2012) 35–44. [CrossRef] [Google Scholar]
  56. Carletti P., Masi A., Wonisch A., Grill D., Tausz M., Ferretti M., Changes in antioxidant and pigment pool dimensions in UV-B irradiation maize seedlings, Environ. Exp. Bot. 50 (2003) 149–157. [CrossRef] [Google Scholar]
  57. Vignesh R., Venkatesh N.R., Meenakshisundaram B., Jayapradha R., Novel instant organic fertiliser and analysis of its growth effects on spinach, J. Biol. Sci. 12 (2) (2012) 105–110. [CrossRef] [Google Scholar]
  58. Tosun M., Ercisli S., Sengul M., Ozer H., Polat T., Ozturk E., Antioxidant properties and total phenolic content of eight Salvia species from Turkey, Biol. Res. 42 (2009) 175–181. [CrossRef] [PubMed] [Google Scholar]