Free Access
Volume 70, Number 6, November-December 2015
Page(s) 325 - 332
Published online 30 September 2015
  1. Sudar R., Jurković Z., Dugalić K., Tomac I., Jurković V., Viljevac M. Sorbitol and sugar composition of plum fruit during ripening, Proceedings 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, (2011) 1067–1071. [Google Scholar]
  2. FAO. FAOSTAT online database, available at link Accessed on December (2011). [Google Scholar]
  3. Onagri. National Observatory of Agriculture,, 2009. [Google Scholar]
  4. Cao G.H., Sofic E., Prior L.R., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships, Free Rad. Biol. Med. 22 (1997) 749–760. [Google Scholar]
  5. Byrne, D. H., Noratto, G., Cisneroszevallos, L., Porter, W., Vizzotto, M., Health benefits of peach, nectarine and plums, Acta Hort. 841 (2009) 267–274. [Google Scholar]
  6. Rouphael Y., Cardarelli M., Colla G., Rea E., Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation, Hortic. Sci. 43 (2008) 730–736. [Google Scholar]
  7. Ragab R., Prudhomme C., Climate change and water resources management in arid and semiarid regions: prospective and challenges for the 21st century, Biosyst. Eng. 81 (2002) 3–34. [Google Scholar]
  8. Stefanelli D., Goodwin I., Jones R., Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients, Food Res. Int. 43 (2010) 1833–1843. [CrossRef] [Google Scholar]
  9. Lopez G., Behboudian M.H., Vallverdu X., Mata M., Girona J., Marsal J., Mitigation of severe water stress by fruit thinning in ‘O’Henry’ peach: Implications for fruit quality, Sci. Horti. 125 (2010) 294–300. [CrossRef] [Google Scholar]
  10. Ripoll, J., Urban, L., Staudt, M., Lopez-Lauri, F., Bidel, L.P.R., Bertin, N. Water shortage and quality of fleshy fruits—making the most of the unavoidable, J. Exp. Bot. (2014) 65 (15): 4097–4117. [CrossRef] [PubMed] [Google Scholar]
  11. Shi W.J., Hu X.T., Kang S.Z., The status and prospect of RDI technique in water stress conditions, Agric. Res. Arid Areas l6 (1998) 84–88. [Google Scholar]
  12. Liu M.C., Kojim A.T., Tanaka M., Chen H., Effect of soil moisture on plant growth and fruit properties of strawberry, Acta Hortic. Sin. 28 (2001) 307–311. [Google Scholar]
  13. Poiroux-Gonorda F., Santini J., Fanciullino A., Lopez-Laurid F., Giannettinib J., Sallanond H., Berti L., Urband, L., Metabolism in orange fruits is driven by photooxidative stress in the leaves, Physiol, Plant. 149 (2013) 175–187. [Google Scholar]
  14. Li, S.H., 1993. The Response of sensitive periods of fruit tree growth, yield and qualityto water stress and water saving irrigation, Plant Physiol. Commun. 29 (1), 10–16. [Google Scholar]
  15. Marsal J., Lopez G., Mata M., Arbones A., Girona J., Recommendations for water conservation in peach orchards in mediterranean climate zones using combined regulated deficit irrigation, Acta Hortic. 664 (2004) 391–397. [CrossRef] [Google Scholar]
  16. García-Mariño N., De la Torre F., Matilla A.J., Organic acids and soluble sugars in edible and nonedible parts of damson plum (Prunus domestica L. subsp. insititia cv. Syriaca) fruits during development and ripening, Food Sci. Technol. Int. 14 (2008) 187–193. [CrossRef] [Google Scholar]
  17. Antognozzi E., Battistelli A., Famiani F., Moscatello S., Stanica F., Tombesi A., Influence of CPPU on carbohydrate accumulation and metabolism in fruits of Actinidia deliciosa (A. Chev.), Sci. Hortic. 65 (1996) 37–47. [CrossRef] [Google Scholar]
  18. Zhishen J., Mengcheng T., Jianming W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64 (1999) 555–559. [CrossRef] [Google Scholar]
  19. Kim D.O., Lee C.Y., Extraction and isolation of polyphenolics, in R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry, New York: John Wiley & Sons (2002), pp. I1.2.1–I1.2.12. [Google Scholar]
  20. Singleton V.L., Rossi J.A. Jr., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic. 16 (1965) 144–158. [Google Scholar]
  21. Thakur A., Zora S., Responses of ‘Spring Bright’ and ‘Summer Bright’ nectarines to deficit irrigation: Fruit growth and concentration of sugars and organic acids, Sci. Horti. 135 (2012), 1–226. [CrossRef] [Google Scholar]
  22. Intrigliolo D.S., Castel J.R., Response of plum trees to deficit irrigation under two crop levels: tree growth, yield and fruit quality, Irrig. Sci. 28 (2010) 525–534. [CrossRef] [Google Scholar]
  23. Leib B.G., Caspari H.W., Redulla C.A., Andrews P.K., Jabro J.J., Partial rootzone drying and deficit irrigation of ‘Fuji’ apples in a semiarid climate, Irrig. Sci. 24 (2006) 85–99. [CrossRef] [Google Scholar]
  24. Pérez-Pérez J.G., Robles J.M., Botıa P., Influence of deficit irrigation in phase III of fruit growth on fruit quality in “lane late” sweet orange, Agric. Water Manage. 96 (2009) 969–979. [CrossRef] [Google Scholar]
  25. Sotiropoulos T., Kalfountzos D., Aleksiou I., Kotsopoulos S., Koutinas N., Response of a clingstone peach cultivar to regulated deficit irrigation, Sci. Agric. (Piracicaba, Braz.) 67 (2010) 164–169. [Google Scholar]
  26. Cheng F.H., Li S.H., Meng Z.Q., Study on the effect of RDI on the vegetative growth, cropping and fruit quality of Yali pear variety, J. Fruit Sci. 20 (2003) 22–26. [Google Scholar]
  27. Crisosto C.H., Crisosto G., Bowerman E., Understanding consumer acceptance of peach, nectarine and plum cultivars, Acta Hortic. 604 (2003) 115–119. [CrossRef] [Google Scholar]
  28. Ningbo Cui, Taisheng Du, Shaozhong Kang, Fusheng Li, Jianhua Zhang, Mixia Wang, Zhijun Li., Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees, Agric. Water Manage. 95 (2008) 489–497. [CrossRef] [Google Scholar]
  29. Ebel R.C., Proebsting E.L., Patterson M.E., Regulated deficit irrigation may alter apple maturity, quality, and storage life, Hort-Science 28 (1993) 141–143. [Google Scholar]
  30. Kobashi K., Gemma H., Iwahori S., Abscisic acid content and sugar metabolism of peaches grown under water stress, J. Am. Soc. Hort. Sci. 125(2000) 425–428. [Google Scholar]
  31. Kobashi K., Gemma H., Iwahori S., Partitioning of photoassimilates in peach trees under water stress condition. J. Jpn. Soc. Hort. Sci. 68 (1999) 72 (in Japanese). [CrossRef] [Google Scholar]
  32. Jacob S., Vanoli M., Grassi M., Rizzolo A., Zerbini P.E., Cubeddu R., Pifferi A., Spinelli L., Torricelli A., Changes in sugar and acid composition of ‘Ambra’ nectarines during shelf life based on non-destructive assessment of maturity by time-resolved reflectance spectroscopy, J. Fruit Orn. Pl. Res. 14 (2006) 183–194. [Google Scholar]
  33. Singh S.P., Singh Z., Swinny E.E., Sugars and organic acids in Japanese plums (Prunus salicina Lindell) as influenced by maturation, harvest date, storage temperature and period, Int. J. Food Sci. Technol. 44 (2009) 1973–1982. [Google Scholar]
  34. Mills T.M., Behboudian M.H., Clothier B.E., Water relations, growth, and the compo- sition of ‘Braeburn’ apple fruit under deficit irrigation, J. Am. Soc. Hort. Sci. 121 (1996) 286–291. [Google Scholar]
  35. Yakushiji H., Morinaga K., Nonami H., Sugar accumulation and partitioning in Satsuma mandarin tree tissues and fruit in response to drought stress, J. Am. Soc. Hortic. Sci. 123 (1998) 719–726. [Google Scholar]
  36. Kanayama Y., Moriguchi R., Deguchi M., Kanahama K., Yamaki S., Effects of environmental stresses and abscisic acid on sorbitol-6-phosphate dehydrogenase expression in rosaceae fruit trees, Acta Hortic. 738 (2007) 375–381. [CrossRef] [Google Scholar]
  37. Kim Y.C., Koh K.S., Koh J.S., Changes of flavonoids in the peel of Jeju native citrus fruits during maturation, Food Sci. Biotechnol. 10 (2001) 483–487. [Google Scholar]
  38. Monet R., Le pêcher. Génétique et physiologie, INRA (Ed), Masson (1983), 86–96. [Google Scholar]
  39. Ojeda H., Ary C., Kraeva E., Carbonneau A., Deloire A., Influence of pre and postveraison water deficit on synthesis and concentration of skin phenolic compunds during berry growth of Vitis vinifera L., cv Shiraz, Am. Enol. Vitic. 53 (2002), 261–267. [Google Scholar]