Free Access
Volume 71, Number 5, September-October 2016
Page(s) 329 - 338
Published online 21 October 2016
  1. FAOSTAT data, Retrieved 28 December 2007, from (2007). [Google Scholar]
  2. Australian Bureau of Statistics, Retrieved on 29 December 2005 from (2005). [Google Scholar]
  3. Ward G., Melvin Carter E., Pasqual G., Stone fruit from Western Australia: at a glance, Department of Agriculture Western Australia. Bulletin, 4397, Agriculture Western Australia, South Perth, 2000. [Google Scholar]
  4. Tromp J., Wertheim S.J., Fruit growth and development, in: Tromp J., Webster A.D., Wertheim S.J. (Eds.), Fundamentals of temperate zone tree fruit production, Backhuys Publishers, Leiden, 2005. [Google Scholar]
  5. Zuzunaga M., Serrano M., Martinez-Romero D., Valero D., Riquelme F., Comparative study of two plum (Prunus salicina Lindl.) cultivars during growth and ripening, Food Sci. Technol. Int. 7 (2001) 123–130. [Google Scholar]
  6. LaRue J.H., Johnson R.S., Peaches, plums and nectarines: Growing and handling for fresh market, Cooperative Extension, University of California, Division of Agriculture and Natural Resouces, Publication 3331, 1989. [Google Scholar]
  7. Salunkhe D.K., Kadam S.S. (Eds.), Handbook of fruit science and technology : Production, composition, storage, and processing, Marcel Dekker, New York, 1995. [Google Scholar]
  8. Abdi N., Hofford, P., McGlasson W., Mizrahi, Y., Ripening behaviour and responses to propylene in four cultivars of Japanese type plums, Postharvest Biol. Technol. 12 (1997) 21–34. [CrossRef] [Google Scholar]
  9. Jason J.S., Chohan G.S., Maturity study in plum cv. Kala Amritsari under subtropical conditions, Prog. Hort. 14 (1982) 11. [Google Scholar]
  10. Cambrink M.B., Plums and Related Fruits, in: MaCre R., Robinson R.K., Sadler M.J. (Eds.), Encyclopedia of food science, food technology and nutrition, Academic Press, London, 1993. [Google Scholar]
  11. Westwood M.N., Temperate-zone pomology: Physiology and culture, Timber Press, Portland, Oregon, 1993. [Google Scholar]
  12. Bal J.S., Chohan G.S., Studies on the fruit maturity and quality of plum cv. Titron in Punjab, National symposium on temperate fruits held at Solan HPKVV, March, 1982, 57, 1982, pp. 15–18. [Google Scholar]
  13. Tormann H., Zyl H.J.V., Maturity standards for export plums, Deciduous Fruit Grow. 32 (1982) 22. [Google Scholar]
  14. Crisosto C.H., Stone fruit maturity indices: a descriptive review, Postharvest News Info. 5 (1994) 65–68. [Google Scholar]
  15. Giovannoni J., Molecular biology of fruit maturation and ripening, Ann. Rev. Plant Physiol. Mol. Biol. 52 (2001) 725–749. [CrossRef] [PubMed] [Google Scholar]
  16. Kader A.A., Fruit maturity, ripening and quality relationships, Acta Hortic. 485 (1999) 203–208. [CrossRef] [Google Scholar]
  17. Khan A.S., Singh Z., Pre-harvest application of putrescine influence Japanese plum fruit ripening and quality, Fruit Sci. Technol. Int. 16 (2010) 53–64. [CrossRef] [PubMed] [Google Scholar]
  18. Khan A.S., Ahmed M.J., Singh Z., Increased ethylene biosynthesis elevates incidence of chilling injury in cold-stored ‘Amber Jewel’ Japanese plum (Prunus salicina Lindl.) during fruit ripening, Int. J. Food Sci. Technol. 46 (2011) 642–650. [CrossRef] [Google Scholar]
  19. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding, Anal. Biochem. 72 (1976) 248–254. [CrossRef] [Google Scholar]
  20. McGuire R.G., Reporting of objective color measurements, HortScience 27 (1992) 254–255. [Google Scholar]
  21. Khan A.S., Singh Z., 1-Methylcyclopropene application and modified atmosphere packaging affect ethylene biosynthesis, fruit softening, and quality of ‘Tegan Blue’ japanese plum during cold storage, J. Am. Soc. Hort. Sci. 133 (2008) 290–299. [Google Scholar]
  22. Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und-Technologie 28 (1995) 25–30. [CrossRef] [Google Scholar]
  23. Baldicchi A., Farinelli D., Micheli M., Di Vaio C., Moscatello S., Battistelli A., Walker R.P., Famiani F., Analysis of seed growth, fruit growth and composition and phospoenolpyruvate carboxykinase (PEPCK) occurrence in apricot (Prunus armeniaca L.), Sci. Hortic. 186 (2015) 38–46. [CrossRef] [Google Scholar]
  24. Khan A.S., Singh Z., Pre-harvest application of putrescine influence Japanese plum fruit ripening and quality, Fruit Sci. Technol. Int. 16 (2010) 53–64. [CrossRef] [PubMed] [Google Scholar]
  25. Lelievre J.M., Latchè A., Jones B., Bouzayen M., Pech J.-C., Ethylene and fruit ripening, Physiol. Plant. 101 (1997) 727–739. [CrossRef] [Google Scholar]
  26. Abdi N., McGlasson W.B., Holford P., Williams M., Mizrahi J., Responses of climacteric and suppressed-climacteric plums to treatment with propylene and 1-methylcyclopropene, Postharvest Biol. Technol. 14 (1998) 29–39. [CrossRef] [Google Scholar]
  27. Amoros A., Zapata P., Pretel M.T., Botella M.A., Serrano M., Physico-chemical and physiological changes during fruit development and ripening of five loquat (Eriobotrya japonica Lindl.) cultivars, Food Sci. Technol. Int. 9 (2003) 43–51. [CrossRef] [Google Scholar]
  28. Yang S.F., Oetiker J.J., Molecular biology of ethylene biosynthesis and its application in horticulture, J. Japn. Soc. Hort. Sci. 67 (1998) 1209–1214. [CrossRef] [Google Scholar]
  29. Kruger L., Cook N., Holcroft D.M., Quality of Japanese plums as influenced by time of harvest and rate of ethylene production, Acta Hortic. 600 (2003) 453–456. [CrossRef] [Google Scholar]
  30. Zuzunaga M., Rodriguez P., Derrano M., Riquelme F., Responses to ethylene treatments in two plum cultivars, Acta Hortic. 553 (2001) 179–180. [CrossRef] [Google Scholar]
  31. Serrano M., Martinez-Romero D., Gillen F., Valero D., Effect of exogenous putrescine on improving shelf life of four plum cultivars, Postharvest Biol. Technol. 30 (2003) 259–271. [CrossRef] [Google Scholar]
  32. Khan A.S., Singh Z., Abbasi N.A., Pre-storage putrescine application suppresses ethylene biosynthesis and retards fruit softening during low temperature storage in ‘Angelino’ Plum, Postharvest Biol. Technol. 46 (2007) 36–46. [CrossRef] [Google Scholar]
  33. Martınez-Madrid M.C., Serrano M., Pretel M.T., Martinez-Reina G., Romojaro F., The ripening of Prunus persica fruits with a dominant flat allele, Food Sci. Technol. Int. 6 (2000) 399–405. [CrossRef] [Google Scholar]
  34. Martınez-Madrid M.C., Martínez G., Pretel M.T., Serrano M., Romojaro F., Role of ethylene and abscisic acid in physicochemical modifications during melon ripening, J. Agri. Food Chem. 47 (1999) 5285–5290. [CrossRef] [Google Scholar]
  35. Martınez-Madrid M.C., Serrano M., Riquelme F., Romojaro F., Polyamines, abscisic acid and ethylene production in tomato fruit, Phytochem. 43 (1996) 323–326. [CrossRef] [Google Scholar]
  36. Gil M.I., Tomas-Barberan A.T., Hess-Pierce B., Kader A.A., Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California, J. Agric. Food Chem. 50 (2002) 4976–4982. [CrossRef] [PubMed] [Google Scholar]
  37. Vasantha Rupasinghe H.P., Jayasankar S., Lay W., Variation in total phenolics and antioxidant capacity among European plum genotypes, Sci. Hortic. 108 (2006) 243–246. [CrossRef] [Google Scholar]
  38. Jooste M., Rohwer E.A., Kidd M., Huysamer M., Comparison of antioxidant levels and cell membrane composition during fruit development in two plum cultivars (Prunus salicina Lindl.) differing in chilling resistance, Sci. Hortic. 180 (2014) 176–189. [CrossRef] [Google Scholar]