Free Access
Issue
Fruits
Volume 63, Number 2, March-April 2008
Page(s) 75 - 84
DOI https://doi.org/10.1051/fruits:2007049
Published online 13 March 2008
  1. Spreen T.H., Projection of world production and consumption of citrus to 2010, Fruit Process. 13 (6) (2003) 378, 380–384. [Google Scholar]
  2. Peres B., Barlet N., Loiseau G., Montet D., Review of the current methods of analytical traceability allowing determination of the origin of foodstuffs, Food Control 18 (2007) 228–235. [Google Scholar]
  3. Bretó M.P., Ruiz C., Pina J.A., Asíns M.J., The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species, Mol. Phylogenet. Evol. 21 (2) (2001) 285–293. [CrossRef] [PubMed] [Google Scholar]
  4. Sodeko O.O., Izuagbe Y.S, Ukhun M.E., Effect of different preservative treatment on the microbial population of Nigerian orange juice, Microbios 51 (1987) 133–143. [PubMed] [Google Scholar]
  5. Montet D., Leesing R., Gemrot F., Loiseau G., Development of an efficient method for bacterial diversity analysis: Denaturing Gradient Gel Electrophoreisis (DGGE), in: Semin. Food safety and international trade, Bangkok, Thailand, 2004. [Google Scholar]
  6. Leesing R., Identification and validation of specific markers for traceability of aquaculture fish for import/export, Univ. Montpellier 2, Thesis, Montpellier, France, 2004, 183 p. [Google Scholar]
  7. Le Nguyen D.D., Ha N.H, Dijoux D., Loiseau G., Montet D., Determination of fish origin by using 16S rDNA fingerprinting of bacterial communities by PCR–DGGE : an application on Pangasius fish from Vietnam, Food control 19 (5) (2008) 454–460. [Google Scholar]
  8. Muyzer G., Dewaal E.C., Uitterlinden A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol. 59 (1993) 695–700. [PubMed] [Google Scholar]
  9. Muyzer G., Brinkoff T., Nübel U., Santegoeds C., Schäfer H., Wawer C., Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, in: Akkermans A.D.L., van Elsas J.D., de Bruyn F.J. (Eds.), Molecular microbiology ecology manual, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1998, pp. 1–27. [Google Scholar]
  10. Muyzer G., Smalla K., Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek 73 (1) (1998) 127–141. [Google Scholar]
  11. Ovreas L., Forney L., Daae F. L., Torsvik V., Distribution of bacterioplankton in Meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA, Appl. Environ. Microbiol. 63 (1997) 3367–3373. [PubMed] [Google Scholar]
  12. Ampe F., Omar N.B., Moizan C., Wacher C., Guyot J.P., Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations, Appl. Environ. Microbiol. 65 (1999) 5464–5473. [PubMed] [Google Scholar]
  13. Diéz B., Pedrós-Alió C., Marsh T.L., Massana R., Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques, Appl. Environ. Microbiol. 67 (2001) 2942–2951. [CrossRef] [PubMed] [Google Scholar]
  14. Omar N.B., Ampe F., Microbial community dynamics during production of the Mexican fermented maize dough pozol, Appl. Environ. Microbiol. 66 (2000) 3664–3673. [CrossRef] [PubMed] [Google Scholar]
  15. Sekiguchi H., Watanabe M., Nakahara T., Xu B., Uchiyama H., Succession of bacterial community structure along the Changjiang river determined by denaturing gradient gel electrophoresis and clone library analysis, Appl. Environ. Microbiol. 68 (2002) 5142–5150. [CrossRef] [PubMed] [Google Scholar]
  16. Ercolini D., PCR-DGGE fingerprinting: novel strategies for detection of microbes in food, J. Microbiol. Methods 56 (2004) 297–314. [CrossRef] [PubMed] [Google Scholar]
  17. Watanabe T., Asakawa S., Nakamura A., Nagaoka K., Kimura M., DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil, FEMS Microbiol. Lett. 232 (2004) 153–163. [CrossRef] [PubMed] [Google Scholar]
  18. Sheffield V.C., Beck J.S., Stone E.M., Myzers R.M., Attachment of a 40 bp G+C rich sequence (GC-clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-based changes, Proc. Natl. Acad. Sci. USA 86 (1989) 232–236. [Google Scholar]
  19. Muyzer G., Teske A., Wirsen C.O., Jannasch H.W., Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent sample by denaturing gradient gel electrophoresis of 16S rDNA fragment, Arch. Microbiol. 164 (1995) 165–172. [CrossRef] [PubMed] [Google Scholar]
  20. Van Hannen E.J., Zwart G., van Agterveld M.P., Gons H.J., Ebert J., Laanbroek H.J., Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses, Appl. Environ. Microbiol. 65 (1999) 795–801. [PubMed] [Google Scholar]
  21. Kowalchuk G.A., Stephen J.R., de Boer W., Prosser J.I., Embley T.M., Woldendorp J.W., Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR amplified 16S ribosomal DNA fragment, Appl. Environ. Microbiol. 63 (1997) 1489–1497. [PubMed] [Google Scholar]
  22. Heyndrickx M., Vauterin L., Vandamme P., Kersters K., De Vos P., Applicability of combines amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy, J. Microbiol. Methods 26 (1996) 247–259. [CrossRef] [Google Scholar]
  23. Jagoueix S., Bové J.M., Garnier M., PCR detection of the two Candidatus Liberobacter species associated with greening disease of citrus, Mol. Cell. Probes 10 (1) (1996) 43–50. [Google Scholar]
  24. Hocquellet A., Toorawa P., Bové J.M., Garnier M., Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the operon, Mol. Cell. Probes 13 (5) (1999) 373–379. [CrossRef] [PubMed] [Google Scholar]
  25. Do Carmo Teixeira D., Danet J.L., Eveillard S., Martins E.C., de Jesus jr. W.C., Yamamoto P.T., Aparecido Lopes S., Beozzo Bassanezi R., Ayres A.J., Saillard C., Bové J.M., Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the Candidatus Liberibacter species associated with the disease, Mol. Cell. Probes 19 (3) (2005) 173–179. [CrossRef] [PubMed] [Google Scholar]
  26. Li W., Hartung J.S., Levy L., Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing, J. Microbiol. Methods 66 (1) (2006) 104–115. [CrossRef] [PubMed] [Google Scholar]
  27. Lacava P.T., Li W.B., Araújo W.L., Azevedo J.L., Hartung J.S., Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants, J. Microbiol. Methods 65 (3) (2006) 535–541. [CrossRef] [PubMed] [Google Scholar]
  28. Li W., Brlansky R.H., Hartung J.S., Amplification of DNA of Xanthomonas axonopodis pv. citri from historic citrus canker herbarium specimens, J. Microbiol. Methods 65 (2) (2006) 237–246. [CrossRef] [PubMed] [Google Scholar]
  29. Picchi S.C., Vilas-Boas L.A., Ceresini P.C., de Macedo Lemos E.G., Franco Lemos M.V., Strain variability in the DNA immigration control region (ICR) of Xylella fastidiosa, Res. Microbiol. 57 (3) (2006) 254–262. [CrossRef] [Google Scholar]