Free Access
Issue
Fruits
Volume 65, Number 1, January-February 2010
Page(s) 31 - 38
DOI https://doi.org/10.1051/fruits/2009039
Published online 10 February 2010
  1. Harvey J.M., Uota M., Table grapes and refrigeration: Fumigation with sulphur dioxide, Int. J. Refrig. 1 (1978) 167. [CrossRef] [Google Scholar]
  2. Luvisi D.A., Shorey H.H., Smilanick J.L., Thompson J.F., Gump B.H., Knutson J., Sulphur dioxide fumigation of table grapes, Univ. Calif. Div. Agric. Sci., Publ. 1932, Oakland, USA, 1992. [Google Scholar]
  3. Mercier J., Marrone P.G., Biological control of microbial spoilage of fresh produce, In: Sapers G.M., Gorny J.R., Yousef A.E. (Eds.), Microbiology of fruits and vegetables, CRC Press (Taylor and Francis), Boca Raton, USA, 2006, pp. 523–539. [Google Scholar]
  4. Strobel G.A., Dirkse E., Sears J.Markworth C., Volatile antimicrobials from Muscodor albus, a novel endophytic fungus, Microbiol. 147 (2001) 2943–2950 [Google Scholar]
  5. Mercier J., Jiménez J.I., Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus, Postharv. Biol. Technol. 31 (2004) 1–8. [CrossRef] [Google Scholar]
  6. Mercier J.Smilanick J.L., Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus, Biol. Control 32 (2005) 401–407 [CrossRef] [Google Scholar]
  7. Mercier J.Jiménez J.I., Potential of the volatile-producing fungus, Muscodor albus, for control of building molds, Can. J. Microbiol. 53 (2007) 404–410 [CrossRef] [PubMed] [Google Scholar]
  8. Mlikota Gabler F., Fassel R., Mercier J.Smilanick J.L., Influence of temperature, inoculation interval, and dose on biofumigation with Muscodor albus to control postharvest gray mold on grapes, Plant Dis. 90 (2006) 1019–1025 [CrossRef] [Google Scholar]
  9. Mercier J., Jiménez-Santamaría J.I.Tamez-Guerra P., Development of the volatile-producing fungus Muscodor albus Worapong, Strobel, and Hess as a novel antimicrobial biofumigant, Rev. Mex. Fitopatol. 25 (2007) 173–179 [Google Scholar]
  10. Anon., Pesticide product registrations; conditional approval, US EPA, Code of Federal Regulations 71 (2006) 9115–9117. [Google Scholar]
  11. Schnabel G.Mercier J., Use of a Muscodor albus pad delivery system for the management of brown rot of peach in shipping cartons, Postharvest Biol. Technol. 42 (2006) 121–123 [CrossRef] [Google Scholar]
  12. Mercier J., Walgenbach P., Jiménez J.I., Biofumigation with Muscodor albus pads for controlling decay in commercial table grape cartons, HortSci. 40 (2005) 1144 (Abstr.). [Google Scholar]
  13. Jiménez J.I., Mercier J., Optimization of volatile organic compound production from rye grain culture of Muscodor albus for postharvest fumigation, Phytopathol. 95 (2005) S48 (Abstr.). [Google Scholar]
  14. Schotsmans W.C., Braun G., DeLong J.M.Prange R.K., Temperature and controlled atmosphere effects on efficacy of Muscodor albus as a biofumigant, Biol. Cont. 44 (2008) 101–110 [CrossRef] [Google Scholar]
  15. Mlikota Gabler F., Mercier J., Jiménez J.I.Smilanick J.L., Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes, Postharv. Biol. Technol. 55 (2010) 78–84 [CrossRef] [Google Scholar]
  16. Zutahy Y., Lichter A., Kaplunov T.Lurie S., Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads, Postharv. Biol. Technol. 50 (2008) 12–17 [CrossRef] [Google Scholar]
  17. Yamashita F., Tonzar A.C., Fernandes J.G., Moriya S.Benassi M.T., Influence of different modified atmosphere packaging on overall acceptance of fine table grapes var. Italia stored under refrigeration, Cienc. Tecnol. Aliment. 20 (2000) 110–114 [Google Scholar]
  18. Artés-Hernández F., Artés F.Tomás- Barberán F.A., Quality and enhancement of bioactive phenolics in cv. Napoleon table grapes exposed to different postharvest gaseous treatments, J. Agric. Food Chem. 51 (2003) 5290–5295 [CrossRef] [PubMed] [Google Scholar]
  19. Artés-Hernández F., Aguayo E.Artés F., Alternative gas treatments for keeping quality of ‘Autumn seedless’ table grapes during long term cold storage, Postharv. Biol.Technol. 31 (2004) 59–67 [CrossRef] [Google Scholar]
  20. Kader A.A., Summary of CA requirements and recommendations for fruits other than apples and pears, Acta Hortic. 600 (2001) 737–740 [Google Scholar]
  21. Crisosto C.H., Garner D.Crisosto G., Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of 'Redglobe' table grapes, Postharv. Biol. Technol. 26 (2002) 181–189 [CrossRef] [Google Scholar]
  22. Nelson K.E., Controlled atmosphere storage of table grapes, in: Proc. Natl. CA Res. Conf., Mich. State Univ. Hortic. Rep. 9, 1969, pp. 69–70. [Google Scholar]
  23. Yahia E.M., Nelson K.E.Kader A.A., Postharvest quality and storage life of grapes as influenced by adding carbon monoxide to air or controlled atmospheres, J. Am. Soc. Hortic. Sci. 108 (1983) 1067–1071 [Google Scholar]
  24. Hamilton-Kemp T.R., Archbold D.D., Loughrin J.H., Collins R.W.Byers M.E., Metabolism of natural volatile compounds by strawberry fruit, J. Agric. Food Chem. 44 (1996) 2802–2805 [CrossRef] [Google Scholar]
  25. Archbold D.D., Hamilton-Kemp T.R., Barth M.M.Langlois B.E., Identifying natural volatile compounds that control gray mold during postharvest storage of strawberry, blackberry and grape, J. Agric. Food Chem. 45 (1997) 4032–4037 [CrossRef] [Google Scholar]
  26. Archbold D.D., Hamilton-Kemp T.R., Clements A.M.Collins R.W., Fumigating ‘Crimson seedless’ table grapes with (E)-2-hexenal reduces mold during long-term postharvest storage, HortSci. 34 (1999) 705–707 [Google Scholar]
  27. Lurie S., Lichter A., Zutahy Y.Kaplonov T., Modified ethanol atmosphere to control decay of table grapes, Acta Hortic. 768 (2008) 287–292 [Google Scholar]
  28. Moyls A.L., Sholberg P.L.Gaunce A.P., Modified-atmosphere packaging of grapes and strawberries fumigated with acetic acid, HortSci. 31 (1996) 414–416 [Google Scholar]
  29. Crisosto C.H., Smilanick J.L.Dokoozlian N., Illustrating the importance of water loss during cooling delays for California table grapes, Calif. Agric. 55 (2001) 39–42 [CrossRef] [Google Scholar]
  30. Chand-Goyal T.Spotts R.A., Biological control of postharvest diseases of apple and pear under semi-commercial and commercial conditions using three saprophytic yeasts, Biol. Control 10 (1997) 199–206 [CrossRef] [Google Scholar]
  31. Droby S., Cohen L., Daus A., Weiss B., Horev B., Chalutz E., Katz H., Keren-Tuur M.Shachnai A., Commercial testing of Aspire: A yeast preparation for the biological control of postharvest decay of citrus, Biol. Control 12 (1998) 97–101 [CrossRef] [Google Scholar]
  32. Schisler D.A., Slininger P.J., Kleinkopf G., Bothast R.J.Ostrowski R.C., Biological control of Fusarium dry rot of potato tubers under commercial storage conditions, Am. J. Potato Res. 77 (2000) 29–40 [CrossRef] [Google Scholar]
  33. Usall J., Teixidó N., Torres R., Ochoa de Eribe X.Viñas I., Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit, Postharv. Biol. Technol. 21 (2001) 147–156 [CrossRef] [Google Scholar]