Free Access
Issue
Fruits
Volume 65, Number 3, May-June 2010
Page(s) 153 - 167
DOI https://doi.org/10.1051/fruits/2010010
Published online 16 June 2010
  1. Dao M., Diallo B.O., Tamini Z., Bastide B., Guinko S., Biologie florale chez Ziziphus mauritiana Lam. (Rhamnaceae), Cameroon J. Exp. Biol. 02 (02) (2007) 70–76. [Google Scholar]
  2. Doligez A., Évolution de la diversité génétique intra population et de sa structure : étude d’un modèle de simulation spatialisé en vue de la gestion des ressources génétiques forestières tropicales, Inst. Natl. Agron. Paris Grignon, thèse, Paris, France, 1996, 273 p. [Google Scholar]
  3. Hébert Y., Vincourt P., Mesures de la divergence génétique. Distances calculées sur les critères biométriques, in : Lefort-Buson M., de Vienne D. (Éds.), Les distances génétiques : estimations et applications, Inst. Natl. Rech. Agron. (INRA), Paris, France, 1985, 181 p. [Google Scholar]
  4. Billand A., Deframond H., Variabilité génétique d’Acacia albida (synonyme Faidherbia albida) en essais comparatifs de provenances au Burkina Faso, in : Physiologie des arbres et arbustes en zones arides et semi-arides, 1990, Groupe d’étude de l’arbre, Paris, France, pp. 235–248. [Google Scholar]
  5. Vandenbelt R.J., Rooting systems of western and southern African Faidherbia albida (Del) A. Chev. (synonyme Acacia albida Del.). A comparative analysis with biogeographic implications, Agrofor. Syst. 14 (1991) 233–244. [CrossRef] [Google Scholar]
  6. Bastide B., Diallo B.O., Essai comparatif de provenances de Faidherbia albdia Del., in : Peltier R. (Éd.), Les parcs Agroforestiers de Faidherbia albida, Cirad-Forêt, Baillarguet, France, 1996. [Google Scholar]
  7. Diallo B.O., Biologie de la reproduction et évaluation de la diversité génétique chez une légumineuse : Tamarindus indica L. (Caesalpinioideae), Univ. Montpellier II, Sci. Tech. Languedoc, thèse, Montpellier, France, 2001, 119 p. [Google Scholar]
  8. Assogbadjo A.E., Kyndt T., Sinsin V., Gheysen G., Van Damme P., Patterns of genetic and morphometric diversity in Baobab (Adansonia digitata) population across different climatic zones of Benin (West Africa), Ann. Bot. 97 (5) (2006) 819–830. [CrossRef] [PubMed] [Google Scholar]
  9. Diarrassouba N., N’Guessan A., Koffi E., Sangaré A., Évaluation des performances de quelques descripteurs quantitatifs et leur utilisation dans la structuration de la population d'un parc naturel de karité en Côte d'Ivoire, Plant Genet. Resour. Newsl. (FAO Publ.) 152 (2008) 65–72. [Google Scholar]
  10. Diallo B.O., Sanou J., Dao M.E.C., Cao V., Assimi S., Amélioration génétique des ligneux soudano-sahéliens, Rapport Act. Final Projet FAC/94/CD/78/BKA, CNRST / INERA / DPF, Ouagadougou, Burkina Faso, 2000, 199 p. [Google Scholar]
  11. Lumen B.O., Becker R., Reyes P.S., Legumes and a cereal with high methionine/cysteine contents, J. Agric. Food Chem. 34 (1986) 361–364. [CrossRef] [Google Scholar]
  12. Chant S.R., Fabales, in: Heywood V.H. (Ed.), Flowering plants of the world, Springer New York, U. S. A., 1993, 315 p. [Google Scholar]
  13. Käss E., Wink M., Molecular evolution of the leguminosae: Phylogeny of three subfamilies based on rbcL-sequences, Biochem. Syst. Ecol. 24 (5) (1996) 365–378. [CrossRef] [Google Scholar]
  14. Da N., Ecuadendron (Fabaceae: Caesalpinioïdeae: Detarieae): A new arborescent genus from Western Ecuador, Novon (1998) 8(1) 45–49. [CrossRef] [Google Scholar]
  15. Léonard J., Genre des Cynometreae et des Amherstieae africaines (Leguminosae-Caesalpinioideae), Mém. Acad. R. Belg. 30 (1957) 1–314. [Google Scholar]
  16. Purseglove J.W., Tropical crops dicotyledons, Longman Sci. Technol., Harlow, Essex, U. K., 1987, 204–206 [Google Scholar]
  17. Kumar A., Sharga A.N., Pushpangadan P., Genetic diversity of Tamarind (Tamarindus indica Linn), Physiol. Mol. Biol. Plants 12 (2006) 2 185–187. [Google Scholar]
  18. Diallo B.O., Joly I.H., Hossaert-McKey M., McKey D., Chevallier M.H., Genetic diversity of Tamarindus indica populations: Any clues on the origin from its current distribution? Afr. J. Biotechnol. 6 (7) (2007) 853–860. [Google Scholar]
  19. Fontès J., Guinko S., Carte de la végétation et de l’occupation des sols du Burkina Faso, IGB (Inst. Géogr. Burkina), Note explic., Ouagadougou, Burkina, 1995, 67 p. [Google Scholar]
  20. Dagnelie P., Statistique théorique et appliquée, De Boeck et Larcier, Brux., Belg., 1998. [Google Scholar]
  21. Kwesiga F., Maghenbe J.A., Performance of fifteen provenances of Gliricidia sepium in Eastern Zambia. Special Issue: Agroforestry research in the African miombo ecozone, in: Proc. Reg. Conf. Agrofor. Res. Afr. Miombo Ecozone, Lilongwe, Malawi, 16–22 June 1991, Zambia/ICRAF Agrofor. Project, Msekera Reg. Res. Stn., Chipata, Zambia. [Google Scholar]
  22. Hodge S.K., Dvorak W.S., Genetic parameters and provenances variation of Pinus tecunumanu in 78 international trials, For. Genet. 6 (1999) 157–180. [Google Scholar]
  23. Hertel H., Schneck V., Genetic and phenotypical variation of scoots pine (Pinus sylvestris L.) populations due to seed origin and environmental conditions at experimental site, For. Genet. 6 (1999) 65–72. [Google Scholar]
  24. Feungchan S., Yimsawat T. Cindaprosert S., Kippowsong P., Tamarind (Tamarindus indica) plant genetic resources in Thaïland, Thai J. Agric. Sci. (Spec. Issue) (1996) 1–11. [Google Scholar]
  25. Koffi K.K., Anzara G.K., Malice M., Djè Y., Bertin P., Baudoin J.P., Bi I.A.Z., Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina) Standl. from Côte d’Ivoire, Biotechnol. Agron. Soc. Environ. 2009 13 (2) 257–270. [Google Scholar]
  26. Nasri N., Khaldi A., Triki S., Variabilité morphologique des cônes et graines de pin d'Alpe et pin pignon en Tunisie, Rev. For. Fr. 56 (1) (2004) 22–28. [CrossRef] [Google Scholar]
  27. Salisbury E.J., The reproductive capacity of plants, G Bell (Ed.), London, U. K., 1942. [Google Scholar]
  28. Baker H.G., Seed weight in relation to environmental condition in California, Ecology 53 (1972) 997–1010. [CrossRef] [Google Scholar]
  29. Foster S.A., Janson C.H., The relationship between seed size and establishment conditions in tropical woody plants, Ecology 66 (1985) 773–780. [CrossRef] [Google Scholar]
  30. Janzen D.H., Seed-eaters versus seed size, number, toxicity and dispersal, Evolution 23 (1999) 1–27. [CrossRef] [Google Scholar]
  31. Armstrong D.P., Westoby M., Seedlings from large seeds tolerates defoliation better: a test using phylogenetically independent contrasts, Ecology 74 (1993) 1082–1100. [Google Scholar]
  32. Ali S.I., Correlation between seed weight and breeding system in closely related amphimitic taxa, Nature 218 (1968) 492–493. [CrossRef] [PubMed] [Google Scholar]
  33. Haig D., Westoby M., Seed size, pollination cost angiosperm success, Evol. Ecol. 5 (1991) 231–247. [CrossRef] [Google Scholar]
  34. Van der Pijl L., Principal of dispersal in higher plants, 3rd ed., Springer, New York, U. S. A., 1982, 557 p. [Google Scholar]
  35. Matlack G.R., Diaspore size, shape and fall behaviour in wind dispersed plant species, Am. J. Bot. 74 (1987) 1150–1160. [CrossRef] [Google Scholar]
  36. Roach D.A., Wulff R.D., Maternal effects in plant, Annu. Rev. Ecol. Syst. 18 (1987) 209–235. [CrossRef] [Google Scholar]
  37. Legay J.M., Debouzie F.A., Introduction à la biologie des populations, Masson, Paris, France, 1985, 512 p. [Google Scholar]
  38. Urbamiak L., Biometric characters of seeds and wings as markers of geographical differenciation between European Scots pine (Pinus sylvestris), Acta Soc. Bot. Pol. (1997) 66 (3–4) 371–378. [Google Scholar]
  39. Lebot V., Genetic improvement of exotic broadleaved species in Madagascar, Bois For. Trop. 247 (1996) 21–36. [Google Scholar]
  40. Ying C.C., Effects on site, provenance and provenance and site interaction in Sitka spruce in Coastal British Columbia, For. Genet. 4 (1997) 99–112. [Google Scholar]
  41. Raymond C.A., Volker P.W., Williams E.R., Provenance variation, genotype by environment interactions and age-age correlations for Eucalyptus regnans on nine sites in south eastern Australia, For. Genet. 4 (1997) 235–251. [Google Scholar]
  42. Kundu S.K., Islam Q.N., Emmanuel G.J.S.K., Tigerstedt P.M.A., Observation on genotype × environment interactions and stability in the international neem (Azadirachta indica A. Juss) provenance trials in Bangladesh and India, For. Genet. 5 (1998) 35–96. [Google Scholar]
  43. Finlay K.W., Wilkinson G.N., The analysis of adaptation in plant breeding programs, Aust. J. Agric. Res. 14 (1963) 742–754. [CrossRef] [Google Scholar]
  44. Wricke G., Übereine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen, Z. Pflanzenzüchtung 47 (1962) 92–96. [Google Scholar]
  45. Eberhart S.A., Russel W.A., Stability parameters for comparing varieties, Crop Sci. 6 (1966) 36–40. [CrossRef] [Google Scholar]
  46. Shukla G.K., Some statistical aspects of partitioning genotype-environmental components of variability, Heredity 29 (1972) 237–345. [CrossRef] [PubMed] [Google Scholar]
  47. Startton D.A., Competition prolongs expression of maternal effects in seedlings of Erigeron annuus (Asteraceae), Am. J. Bot. 76 (1989) 1646–1653. [CrossRef] [Google Scholar]