Free Access
Volume 66, Number 1, January-February 2011
Page(s) 11 - 24
Published online 24 January 2011
  1. Smedema L.K., Shiati K., Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone, Irrig. Drain. Syst. 16 (2002) 161–174. [CrossRef] [Google Scholar]
  2. Postel S., Pillar of sand: can the irrigation miracle last? W.W. Norton & Co., N.Y., U.S.A., 1999, 320 p. [Google Scholar]
  3. Maas E.V., Hoffman G.J., Crop salt tolerance: current assessment, J. Irrig. Drain. Div. 103 (1977) 115–134. [Google Scholar]
  4. Maas E.V., Crop salt tolerance, in: Tanji K.K. (Ed.), Agricultural salinity assessment and management, Am. Soc. Civil Eng., N.Y., U.S.A.,1990. [Google Scholar]
  5. van Genuchten M.T., Gupta S.K., A reassessment of the crop tolerance response function, J. Indian Soc. Soil Sci. 41 (1993) 730–737. [Google Scholar]
  6. Ayers R.S., Westcot D.W., Water quality for agriculture, Irrig. Drain. pap., FAO, Rome, 1985. [Google Scholar]
  7. Munns R., Genes and salt tolerance: bringing them together, New Phytol. 167 (2005) 645–663. [CrossRef] [PubMed] [Google Scholar]
  8. Kijne J.W., Water productivity under saline conditions, in: Kijne J.W., Barker R., Molden D. (Eds.), Water productivity in agriculture: limits and opportunities for improvement, CABI Publ., Wallingford, U.K., 2003. [Google Scholar]
  9. Shani U., Dudley L.M., Field studies of crop response to water and salt stress, Soil Sci. Soc. Am. J. 65 (2001) 1522–1528. [CrossRef] [Google Scholar]
  10. Zeng L., Shannon M.C., Lesch S.M., Timing of salinity stress affects rice growth and yield components, Agric. Water Manag. 48 (2001) 191–206. [CrossRef] [Google Scholar]
  11. Kitchen N.R., Drummond S.T., Lund E.D., Sudduth K.A., Buchleiter G.W., Soil electrical conductivity and topography related to yield for three contrasting soil-crop systems, Agron. J. 95 (2003) 483–495. [CrossRef] [Google Scholar]
  12. Webb R.A., Use of the boundary line in the analysis of biological data, J. Hortic. Sci. 47 (1972) 309–319. [Google Scholar]
  13. Lewandowski I., Schmidt U., Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach, Agr. Ecosyst. Environ. 112 (2006) 335–346. [CrossRef] [Google Scholar]
  14. Johnson C.K., Mortensen D.A., Wienhold B.J., Shanahan J. F., Doran J.W., Site-specific management zones based on soil electrical conductivity in a semiarid cropping system, Agron. J. 95 (2003) 303–315. [CrossRef] [Google Scholar]
  15. Casanova D., Goudriaan J., Bouma J., Epema G. F., Yield gap analysis in relation to soil properties in direct-seeded flooded rice, Geoderma 91 (1999) 191–216. [CrossRef] [Google Scholar]
  16. Milne A.E., Ferguson R.B., Lark R.M., Estimating a boundary line model for a biological response by maximum likelihood, Ann. Appl. Biol. 149 (2006) 223–234. [CrossRef] [Google Scholar]
  17. Lark R.M., An empirical method for describing the joint effects of environmental and other variables on crop yield, Ann. Appl. Biol. 131 (1997) 141–159. [CrossRef] [Google Scholar]
  18. Shani U., Ben-Gal A., Dudley L.M., environmental implications of adopting a dominant factor approach to salinity management, J. Environ. Qual. 34 (2005) 1455–1460. [CrossRef] [PubMed] [Google Scholar]
  19. Tripler E., Ben-Gal A., Shani U., Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix dactylifera L., cv. Medjool), Plant Soil 297 (2007) 147–155. [CrossRef] [Google Scholar]
  20. Hamdi-Aissa B., Le fonctionnement actuel et passé des sols du nord Sahara (cuvette de Ouargla). Approches micromorphologique, géochimique, minéralogique et organisation spatiale, INA, Paris, France, 2001, 307 p. [Google Scholar]
  21. Côte M., Des oasis malades de trop d’eau, Sécheresse 9 (1998) 123–130. [Google Scholar]
  22. Anon., World reference base for soil resources 2006, World Soil Res. Rep., FAO, Rome, Italy, 2006. [Google Scholar]
  23. Dutil P., Contribution à l’étude des sols et paléosols du Sahara, Univ. Louis Pasteur, Strasbg., France, 1971, 346 p. [Google Scholar]
  24. Slavich P.G., Petterson G.H., Estimating the electrical conductivity of saturated paste extracts from 1:5 soil, water suspensions and texture, Aust. J. Soil Res. 31 (1993) 73–81. [CrossRef] [Google Scholar]
  25. Chi C.-M., Wang Z.-C., Characterizing salt-affected soils of Songnen plain using saturated paste and 1:5 soil-to-water extraction methods, Arid Land Res. Manag. 24 (2010) 1–11. [CrossRef] [Google Scholar]
  26. Makowski D., Doré T., Monod H., A new method to analyse relationships between yield components with boundary lines, Agron. Sustain. Dev. 27 (2007) 119–128. [CrossRef] [EDP Sciences] [Google Scholar]
  27. Daddi Bouhoun M., Brinis L., Étude de la dynamique des sels solubles dans un sol irrigué gypso-salin : cas d’une palmeraie de la cuvette de Ouargla, J. Alger. Reg. Arid. (2006) 17–20. [Google Scholar]
  28. Dubost D., Écologie, aménagement et développement agricole des oasis algériennes, Univ. François Rabelais, Tours, France, 1991, 550 p. [Google Scholar]
  29. Marlet S., Bouksila F., Bahri A., Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis, Agric. Water Manag. 96 (2009) 1311–1322. [CrossRef] [Google Scholar]
  30. Munier P., Le palmier-dattier, G.-P. Maisonneuve & Larose, Paris, France, 1973. [Google Scholar]
  31. Khorsandi F., Yazdi F.A., Gypsum and texture effects on the estimation of saturated paste electrical conductivity by two extraction methods, Commun. Soil Sci. Plant Anal. 38 (2007) 1105–1117. [CrossRef] [Google Scholar]