Free Access
Volume 67, Number 4, July-August 2012
Page(s) 267 - 276
Published online 16 July 2012
  1. Anon., Food and fruit-bearing forest species. 3: Examples from Latin America, FAO For. Pap. 44/3, FAO, Rome, Italy, 1986. [Google Scholar]
  2. Michodjehoun-Mestres L., Souquet J.-M., Fulcrand H., Bouchut C., Reynes M., Brillouet J.-M., Monomeric phenols of cashew apple (Anacardium occidentale L.), Food Chem. 112 (2009) 851–857. [CrossRef] [Google Scholar]
  3. Akinwale T.O., Cashew apple juice: its use in fortifying the nutritional quality of some tropical fruits, Eur. Food Res. Technol. 211 (2000) 205–207. [CrossRef] [Google Scholar]
  4. Garruti D.S., Facundo H.V.V., Souza Neto M.A., Wagner R., Changes in the key odour-active compounds and sensory profile of cashew apple juice during process, in: Blank I., Wüst M., Yeretzian C. (Eds.), Expression of multidisciplinary flavour science, Zürcher Hochsch. Angew. Wiss., Winterthur, Switz., 2010, pp. 215–218. [Google Scholar]
  5. Campos D.C.P., Santos A.S., Wolkoff D.B., Matta V.M., Cabral L.M.C., Couri S., Cashew apple juice stabilization by microfiltration, Desalination 148 (2002) 61–65. [CrossRef] [Google Scholar]
  6. Melo Cavalcante A.A., Rubesam G., Picada J.N., Silva E.G. da, Moreira J.C.F., Henriques J.A.P., Mutagenicity, antioxidant potential, and antimutagenic activity against hydrogen peroxide of cashew (Anacardium occidentale) apple juice and cajuina, Environ. Mol. Mutagen. 41 (2003) 360–369. [CrossRef] [PubMed] [Google Scholar]
  7. Gollucke A.P.B., Recent applications of grape polyphenols in foods, beverages and supplements, Recent Pat. Food Nutr. Agric. 2 (2010) 105–109. [CrossRef] [PubMed] [Google Scholar]
  8. Xia E.-Q., Deng G.-F., Guo Y.-J., Li H.-B., Biological activities of polyphenols from grapes, Int. J. Mol. Sci. 11 (2010) 622–646. [CrossRef] [PubMed] [Google Scholar]
  9. El-Hela A., Abdullah A., Antioxidant and antimicrobial activities of methanol extracts of some Verbena species: in vitro evaluation of antioxidant and antimicrobial activity in relation to polyphenolic content, J. Appl. Sci. Res. 6 (2010) 683–689. [Google Scholar]
  10. Jalosinska M., Wilczak J., Influence of plant extracts on the microbiological shelf life of meat products, Pol. J. Food Nutr. Sci. 59 (2009) 303–308. [Google Scholar]
  11. Lee S.K., Kader A.A., Preharvest and postharvest factors influencing vitamin C content of horticultural crops, Postharvest Biol. Technol. 20 (2000) 207–220. [CrossRef] [Google Scholar]
  12. Beitollahi H., Ardakani M. M., Naeimi H., Ganjipour B., Electrochemical characterization of 2,2’-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydrochinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid, J. Solid State Electrochem. 13 (2009) 353–363. [CrossRef] [Google Scholar]
  13. Figueiredo R.W., Qualidade e bioquímica de parede celular durante o desenvolvimento, maturação e armazenamento de pedúnculos de cajueiro anão precoce CCP 76 submetidos à aplicação pós-colheita de calico, Fac. Ciênc. Farm., Univ. São Paulo, thesis, São Paulo, Brazil, 2000. [Google Scholar]
  14. Papagiannopoulos M., Wollseifen H.R., Mellenthin A., Haber B., Galensa R., Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn, J. Agric. Food Chem. 52 (2004) 3784–3791. [CrossRef] [PubMed] [Google Scholar]
  15. Gordon A., Schadow B., Quijano C. E., Marx F., Chemical characterization and antioxidant capacity of berries from Clidemia rubra (Aubl.) Mart. (Melastomataceae), Food Res. Int. 44 (2011) 2120–2127. [CrossRef] [Google Scholar]
  16. Lichtenthäler R., Marx F., Kind O.M., Determination of antioxidative capacities using an enhanced total oxidant scavenging capacity (TOSC) assay, Eur. Food Res. Technol. 216 (2003) 166–173. [Google Scholar]
  17. Assunção R.B., Mercadante A.Z., Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.) variety and geographic effects, Food Chem. 81 (2003) 495–502. [CrossRef] [Google Scholar]
  18. Souci S.W., Fachmann W., Kraut H., Food composition and nutrition tables (7th ed.), Medpharm Sci. Publ., Stuttg., Ger., 2008. [Google Scholar]
  19. Mercado-Silva E., Benito-Bautista P., Angeles García-Velasco M. de los, Fruit development, harvest index and ripening changes of guavas produced in central Mexico, Postharvest Biol. Technol. 13 (1998) 143–150. [CrossRef] [Google Scholar]
  20. Celik H., Özgen M., Serc S., Kaya C., Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit, Sci. Hortic. 117 (2008) 345–348. [CrossRef] [Google Scholar]
  21. Castillo J., Benavente O., Rio J. A. del, Naringin and neohesperidin levels during development of leaves, flower buds, and fruits of Citrus aurantium, Plant Physiol. 99 (1992) 67–73. [CrossRef] [PubMed] [Google Scholar]
  22. Dragovic-Uzelac V., Levaj B., Mrkic V., Bursac D., Boras M., The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region, Food Chem. 102 (2007) 966–975. [CrossRef] [Google Scholar]
  23. Awad M.A., Jager A. de, Plas L.H.W. van der, Krol A.R. van der, Flavonoid and chlorogenic acid changes in skin of ‘Elstar’ and ‘Jonagold’ apples during development and ripening, Sci. Hortic. 90 (2001) 69–83. [CrossRef] [Google Scholar]
  24. Li Z., Sugaya S., Gemma H., Iwahori S., Flavonoid biosynthesis and accumulation and related enzyme activities in the skin of ‘Fuji‘ and ‘Oorin‘ apples during their development, J. Jap. Soc. Hortic. Sci. 71 (2002) 317–321. [CrossRef] [Google Scholar]
  25. Chirinos R., Galarza J., Betallelez-Pallardel I., Pedreschi R., Campos D., Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages, Food Chem. 120 (2010) 1019–1024. [CrossRef] [Google Scholar]
  26. Almeida J.R.M., D’Amico E., Preuss A., Carbone F., Vos C.H.R. de, Deiml B., Mourgues F., Perrotta G., Fischer T.C., Bovy A.G., Martens S., Rosati C., Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa), Arch. Biochem. Biophys. 465 (2007) 61–71. [CrossRef] [PubMed] [Google Scholar]
  27. Gruz J., Ayaz F.A., Torun H., Strnad M., Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening, Food Chem. 124 (2011) 271–277. [CrossRef] [Google Scholar]
  28. Brito E. S. de, Araújo M.C.P. de, Long-Ze L., Harnly J., Determination of the flavonoid components of cashew apple (Anarcadium occidentale) by LC-DAD-ESI/MS, Food Chem. 105 (2007) 1112–1118. [CrossRef] [PubMed] [Google Scholar]
  29. Lichtenthäler R., Rodrigues R.B., Maia J.G.S., Papagiannopoulos M., Fabricius H., Marx F., Total oxidant scavenging capacities of Euterpe oleracea Mart. (açaí) fruits, Int. J. Food Sci. Nutr. 56 (2005) 53–64. [CrossRef] [PubMed] [Google Scholar]