Free Access
Issue
Fruits
Volume 67, Number 6, November-December 2012
Page(s) 463 - 474
DOI https://doi.org/10.1051/fruits/2012040
Published online 12 October 2012
  1. Martin G.C., Kester D., Almond growth and development, in: Micke W.C., Kester D. (Eds.), Almond orchard management, Div. Agric. Sci., Univ. Calif., Berkeley, U.S.A., 1978, pp. 46–51. [Google Scholar]
  2. Girona J., Mata M., Marsal J., Regulated deficit irrigation during the kernel filling. Period and optimal irrigation rates in almond, Agric. Water Manag. 75 (2005) 152–167. [CrossRef] [Google Scholar]
  3. Goldhamer D.A., Viveros M., Salinas M., Regulated deficit irrigation in almonds: effects of variations in applied water and stress timing on yield and yield components, Irrig. Sci. 24 (2006) 101–114. [CrossRef] [Google Scholar]
  4. Nanos G.D., Kazantzis I., Kefalas P., Petrakis C., Stravroulakis G.G., Irrigation and harvest time affect almond kernel quality and composition, Sci. Hortic. 96 (2002) 246–256. [Google Scholar]
  5. Castel J.R., Fereres E., Responses of young almond trees to two drought periods in the field, J. Hortic. Sci. 57 (1982) 175–187. [Google Scholar]
  6. Marsal J., Girona J., Mata M., Leaf water relation parameters in almond compared to hazelnut trees during a deficit irrigation period, J. Am. Soc. Hortic. Sci. 122 (1997) 582–587. [Google Scholar]
  7. Romero O., Botia P., Garcia F., Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees, Plant Soil 260 (2004) 169–181. [CrossRef] [Google Scholar]
  8. Durán Z.V.H., Rodríguez C.R., Franco D., Impact of sustained–deficit irrigation on tree growth, mineral nutrition, fruit yield and quality of mango in Spain, Fruits 66 (2011) 257–268. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Johnson R.S., Handley D.F., Using water stress to control vegetative growth and productivity of temperate fruit trees, HortScience 35 (2000) 1048–1050. [Google Scholar]
  10. Intrigliolo D.S., Castel J.R., Evaluation of grapevine water status from trunk diameter variations, Irrig. Sci. 26 (2007) 49–59. [CrossRef] [Google Scholar]
  11. García-Tejero I., Durán Z.V.H., Rodríguez P.C.R., Muriel F.J.L., Water and sustainable agriculture, Springer Briefs in Agriculture, Springer Science + Business Media, Neth., 2011. [Google Scholar]
  12. Mahhou A., De Jong T.M., Shackel K.S., Cao T., Water stress and crop load effects on yield and fruit quality of Elegant Lady peach [Prunus persica (L.) Batch], Fruits 61 (2011) 407–418. [CrossRef] [EDP Sciences] [Google Scholar]
  13. García-Tejero I., Durán Z.V.H., Muriel F.J.L., Jiménez B.J.A., Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus crops, Funct. Plant Biol. 38 (2011) 106–117. [CrossRef] [Google Scholar]
  14. Jiménez-Bello M.A., Ballester C., Castel J.R., Intrigliolo D.S., Development and validation of an automatic thermal imaging process for assessing plant water status, Agric. Water Manag. 98 (2011) 1497–1504. [CrossRef] [Google Scholar]
  15. Tubaileh A.S., Sammis T.W., Lugg D.G., Utilization of thermal infrared thermometry for detection water stress in spring barley, Agric. Water Manag. 12 (1986) 75–85. [CrossRef] [Google Scholar]
  16. Blonquist J.M., Norman J.M., Bugbee B., Automated measurement of canopy stomatal conductance based on infrared temperature, Agric. Forest Meteorol. 149 (2009) 1931–1945. [CrossRef] [Google Scholar]
  17. Erlher W.L., Cotton leaf temperatures as related to soil depletion and meteorological factors, Agron. J. 65 (1973) 404–409. [CrossRef] [Google Scholar]
  18. Jackson R.D., Idso S.B., Reginato R.J., Pinter P.J., Canopy temperature as a crop water stress indicator, Water Resour. Res. 17 (1981) 1133–1138. [CrossRef] [Google Scholar]
  19. García-Tejero I., Deficit irrigation for sustainable citrus cultivation in Guadalquivir river basin, Univ. Sevilla, Thesis, Sevilla, Spain, 285 p., 2010. [Google Scholar]
  20. Berni J.A.J., Zarco T.P.J., Sepulcro C.G., Fereres E., Villalobos F., Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imaginery, Remote Sens. Environ. 113 (2009) 2380–2388. [CrossRef] [Google Scholar]
  21. Jones H.G., Stoll M., Santos T., de Sousa C., Chaves M.M., Grant O.M., Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine, J. Exp. Bot. 53 (2002) 2249–2260. [CrossRef] [PubMed] [Google Scholar]
  22. Zarco-Tejada P.J., Berni J.A.J., Suárez L., sepulcré-Cantó G., Morales F., Miller J.R., Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection, Remote Sens. Environ. 113 (2009) 1262–1275. [CrossRef] [Google Scholar]
  23. Wang D., Gartung J., Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation, Agric. Water Manag. 97 (2010) 1787–1794. [CrossRef] [Google Scholar]
  24. Wang X., Yang W., Wheaton A., Cooley N., Moran W., Automated canopy temperature estimation via infrared thermography: a first step towards automated plant water stress monitoring, Comput. Electron. Agric. 73 (2010) 74–83. [CrossRef] [Google Scholar]
  25. Anon., World reference base for soil resources, Food Agric. Organ. U. N. (FAO), Rome, Italy, 1998. [Google Scholar]
  26. Anon., Carte bioclimatique de la zone méditerranéenne, UNESCO-FAO, Not. Explic., Paris, France, 1963. [Google Scholar]
  27. Doorenbos J., Pruitt W.O., Las necesidades de agua de los cultivos, FAO, ser. Riegos y Drenaje, tomo 24, Rome, Italy, 1977. [Google Scholar]
  28. Monteith J.L., Unsworth M.H., Principles of environmental physics, 3rd ed., Acad. Press, Amst., Neth., 2008. [Google Scholar]
  29. Scholander P.F., Hammel H.T., Hemmingsen E.A., Bradstreet E.D., Hydrostatic pressure and osmotic potential of leaves of mangrove and some other plants, Proc. Natl. Acad. Sci. U.S.A. 52 (1964) 119–125. [CrossRef] [PubMed] [Google Scholar]
  30. Kernighan B.W., Ritchie D.M., The C Programming Language, 1st ed., Prentice Hall, Englewood Cliffs, N.J., U.S.A., 1978. [Google Scholar]
  31. Anon., Programming Languages-C, ISO/IEC 9899 WG 14, Int. Stand. Organ., 1999. [Google Scholar]
  32. Shackel K.A., Ahmadi H., Biasi W., Buchner R., Goldhamer D., Gurusinghe D., Hasey S., Kester D., Krueger B., Lampinen, B., McGourty G., Micke W., Mitchman E., Olson B., Pelletrau K., Philips H., Ramos D., Schwankl L., Sibbett S., Snyder R., Southwick S., Stevenson M., Thorpe M., Weinbuam S., Yeager J., Plant water status as an index of irrigation need in deciduous fruit trees, HortTechnology 7 (1997) 23–29. [Google Scholar]
  33. Goldhamer D.A., Fereres E., Irrigation scheduling of almond trees with trunk diameter sensors, Irrig. Sci. 23 (2004) 11–19. [CrossRef] [Google Scholar]
  34. Nortes P., Respuesta Agronómica y Fisiológica del Almendro al Riego Deficitario. Indicadores de Estrés Hídrico, Univ. Politéc. Cartagena, Thesis, Spain, 2008, 194 p. [Google Scholar]
  35. Gomes-Laranjo J., Cutinho J.P., Galhano V., Cordeiro V., Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential, Agric. Water Manag. 83 (2006) 261–265. [CrossRef] [Google Scholar]
  36. Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osório M.L., Carvalho I., Faria T., Pinheiro C., How plants cope with water stress in the field? Photosynthesis and growth, Ann. Bot. 89 (2002) 907–916. [CrossRef] [Google Scholar]
  37. Naor A., Irrigation scheduling and evaluation of tree water status in deciduous orchards, Hortic. Rev. (2006) 112–165. [Google Scholar]
  38. García-Tejero I., Durán Z.V.H., Jiménez B.J.A., Muriel F.J.L., Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards, Sci. Hortic. 128 (2011) 274–282. [CrossRef] [Google Scholar]
  39. Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H., Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field, Funct. Plant Biol. 36 (2009) 978–989. [Google Scholar]
  40. Jurema R., Nogueira M.C., Ibrahim M.A., Bandeira A.M., Stomatic behaviour and leaf water potential in young plants of Annona squamosa submitted to saline water stress, Fruits 59 (2004) 209–214. [CrossRef] [EDP Sciences] [Google Scholar]
  41. Sepulcre C.G., Zarco T.P.J., Jiménez M.J.C., Sobrino J.A., de Miguel E., Villalobos F.J., Detection of water stress in an olive orchard with thermal remote sensing imagery, Agric. Forest Meteorol. 136 (2006) 31–44. [CrossRef] [Google Scholar]
  42. Smith R.C.G., Inferring stomatal resistance of sparse crops from infrared measurements of foliage temperature, Agric. Forest Meteorol. 42 (1988) 183–198. [CrossRef] [Google Scholar]
  43. Testi L., Orgaz F., Villalobos F.J., Variations in bulk canopy conductance of an irrigated olive (Olea europea L.) orchard, Environ. Exp. Bot. 55 (2006) 15–28. [CrossRef] [Google Scholar]