Free Access
Volume 68, Number 2, March-April 2013
Page(s) 147 - 158
Published online 22 March 2013
  1. Goldhamer D.A., Irrigation scheduling with plant indicators: measurement, in: Trimble S.W., Stewart B.A., Howell T.A. (Eds.), Encyclopaedia of Water Science, Marcel Dekker, N.Y., U.S.A., 2003. [Google Scholar]
  2. Jones H.G., Irrigation scheduling: advantages and pitfalls of plant-based methods, J. Exp. Bot. 55 (2004) 2427–2436. [CrossRef] [PubMed] [Google Scholar]
  3. Geerts, S., Raes D., Deficit irrigation as an on-farm strategy to maximise crop water productivity in dry areas, Agric. Water Manag. 96 (2009) 1275–1284. [CrossRef] [Google Scholar]
  4. Durán Zuazo V.H., Rodríguez Pleguezuelo C.R., Tarifa D.F., Impact of sustained-deficit irrigation on tree growth, mineral nutrition, fruit yield and quality of mango in Spain, Fruits 66 (2011) 257–268. [CrossRef] [EDP Sciences] [Google Scholar]
  5. Beniken L., Beqqali M., Dahan R., Benkirane R., Omari F.E., Benazouz A., Hamid Benyahia H., Gaboun F., Évaluation de la résistance de dix porte-greffes d’agrumes résistants à la tristeza vis-à-vis du déficit hydrique, Fruits 66 (2011) 373–384. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Itier B., Maraux F., Ruelle P., Deumier J.M., Applicability and limitations of irrigation scheduling methods and techniques, in: Smith M., Pereira L.S., Berengena J., Itier B., Goussard J., Ragab R., Tollefson L., van Hofwegen P. (Eds.), Irrigation scheduling: from theory to practice, FAO, Rome, Italy, 1996. [Google Scholar]
  7. Katerji N., Les indicateurs de l'état hydrique de la plante, in: Riou C., Bonhomme R., Chassin P., Neveu A., Papy F. (Eds.), L'eau dans l'espace rural, INRA, Paris, Fr., 1997. [Google Scholar]
  8. Jones H.G., Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance, J. Exp. Bot. 58 (2007) 119–130. [Google Scholar]
  9. Kriston-Vizi J., Umeda M., Miyamoto K., Assessment of the water status of mandarin and peach canopies using visible multispectral imagery, Biosyst. Eng. 100 (2008) 338–345. [CrossRef] [Google Scholar]
  10. Ameglio T., Archer P., Cohen M., Valancogne C., Daudet F.A., Dayau S., Cruiziat P., Significance and limits in the use of predawn leaf water potential for tree irrigation, Plant Soil 207 (1999) 155–167. [Google Scholar]
  11. Williams L.E., Araujo F.J., Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera, J. Am. Soc. Hortic. Sci. 127 (2002) 448–454. [Google Scholar]
  12. Allen R.G., Pereira L.S., Raes D., Smith M., Crop evapotranspiration guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, Rome, Italy, 1998. [Google Scholar]
  13. Itier B., Ferreira M.I., Katerji N., Evolution journalière du coefficient de sècheresse entre deux irrigations sur tomate, in: di Castri F., Floret Ch., Rambal S., Roy J., Proc. 5th Int. Conf. Mediterranean Ecosystems, IUBS, Paris, Fr., 1988, pp. 191–196. [Google Scholar]
  14. Itier B., Katerji N., Ferreira M.I., Flura D., Relative evapotranspiration in relation to soil water and predawn leaf water potential: Application to a tomato crop, Acta Hortic. 278 (1990) 101–112. [Google Scholar]
  15. Ferreira M.I., Valancogne C., Experimental study of a stress coefficient: application on a simple model for irrigation scheduling and daily evapotranspiration estimation, in: Farkas I. (Ed.), Proc. 2nd Int. Symp. Mathematical modeling and simulation in agricultural and bio-industries, Bp., Hung., 1997. [Google Scholar]
  16. Katerji N., Itier B., Ferreira I., A study of several indicators of the water status of a tomato crop in a semi-arid region, Agronomie 8 (1988) 425–433. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Goldhamer D.A., Viveros M., Salinas M., Regulated deficit irrigation in almonds: effects of variations in applied water and stress timing on yield and yield components, Irrig. Sci., 24 (2006) 101–114. [CrossRef] [Google Scholar]
  18. Intrigliolo D.S., Castel J.R., Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum, Agric. Water Manag. 83 (2006) 173–180. [Google Scholar]
  19. Bond B.J., Kavanagh K.L., Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential, Tree Physiol. 19 (1999) 503–510. [CrossRef] [PubMed] [Google Scholar]
  20. Tuzet A., Perrier A., Leuning R., A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ. 26 (2003) 1097–1116. [CrossRef] [Google Scholar]
  21. Ferreira M.I., Pacheco C.A., Valancogne C., Michaelsen J., Ameglio T., Daudet F.A., Evapotranspiration, water stress indicators and soil water balance in a Prunus persica orchard, in central Portugal, Acta Hortic. 449 (1997) 379–384. [Google Scholar]
  22. Valancogne C., Dayau S., Ameglio T., Archer P., Daudet F.A., Gama M.I.F., Cohen M., Relations between relative transpiration and predawn leaf water potential in different fruit tree species, Acta Hortic. 449 (1997) 423–429. [Google Scholar]
  23. Ferreira-Gama M.I.F.R., Evapotranspiração real. Estudo realizado na cultura do tomate em região de clima mediterrânico, Univ. Téc. Lisboa, Inst. Sup. Agron., Thesis, Lisb., Port., 1987, 168 p. [Google Scholar]
  24. Silva R.M., Desenvolvimento de um sistema inteligente de determinação das necessidades hídricas para cultura de lenhosas anisotrópicas, Tech. Univ. Lisb., Inst. Sup. Agron., Thesis, Lisb., Port., 2009, 267 p. [Google Scholar]
  25. Fernandez J.E., Moreno F., Cabrera F., Arrue J.L., Martinaranda J., Drip irrigation, soil characteristics and the root distribution and root activity of olive trees, Plant Soil 133 (1991) 239–251. [CrossRef] [Google Scholar]
  26. Lee R., Forest microclimatology, Columbia Univ. Press, N.Y., U.S.A., 1978. [Google Scholar]
  27. Deckers J.A., Nachtergaele F.O., Spaargaren O.C., World reference base for soil resources: Introduction, FAO, ISRIC Acco, Leuven, Belg., 1998. [Google Scholar]
  28. Hagrey S.A. al, Michaelsen J., Hydrogeophysical soil study at a drip irrigated orchard, Portugal, Eur. J. Environ. Eng. Geophys. Soc. 7 (2002) 75–93. [Google Scholar]
  29. Valancogne C., Nasr Z., A heat-balance method for measuring the sap flow in small trees, Agronomie 9 (1989) 609–617. [CrossRef] [EDP Sciences] [Google Scholar]
  30. Valancogne C., Nasr Z., A heat balance method for measuring sap flow in small trees, in: Borghetti J.G.M., Raschi A. (Eds.), Water transport in plants under climatic stress, Camb. Univ. Press, U.K., 1993. [Google Scholar]
  31. Sakuratani T., A heat balance method for measuring water flux in the stem of intact plants, J. Agric. Meteorol. 37 (1981) 9–18. [CrossRef] [Google Scholar]
  32. Valancogne C., Dayau S., Pieri P., Ferreira M.I., Silvestre J., Angelocci L.R., Influence of orchard and vineyard characteristics on maximal plant transpiration, Acta Hortic. 537 (2000) 61–68. [Google Scholar]
  33. Santos F.L., Valverde P.C., Ramos A.F., Reis J.L., Castanheira N.L., Water use and response of a dry-farmed olive orchard recently converted to irrigation, Biosyst. Eng. 98 (2007) 102–114. [CrossRef] [Google Scholar]
  34. Sperry J.S., Adler F.R., Campbell G.S., Comstock J.P., Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant Cell Environ. 21 (1998) 347–359. [CrossRef] [Google Scholar]
  35. Roberts J., The influence of physical and physiological characteristics of vegetation on their hydrological response, Hydrol. Process. 14 (2000) 2885–2901. [CrossRef] [Google Scholar]
  36. Costa J.M., Ortuno M.F., Chaves M.M., Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture, J. Integr. Plant Biol. 49 (2007) 1421–1434. [CrossRef] [Google Scholar]
  37. Fereres E., Soriano M.A., Deficit irrigation for reducing agricultural water use, J. Exp. Bot. 58 (2007) 147–159. [Google Scholar]
  38. Girona J., Gelly M., Mata M., Arbones A., Rufat J., Marsal J., Peach tree response to single and combined deficit irrigation regimes in deep soils, Agric. Water Manag. 72 (2005) 97–108. [CrossRef] [Google Scholar]
  39. Guangyong L., Xingfa H., Xiaowei W., Water use of drip irrigated peach trees under full irrigation and regulated deficit irrigation, in: Proc. 6th Int. Micro-irrig. Cong. Micro-irrigation Technology for Developing Agriculture, S. Afr., 2000, pp. 1–6. [Google Scholar]
  40. Ortuno M.F., Alarcon J.J., Nicolas E., Torrecillas A., Sap flow and trunk diameter fluctuations of young lemon trees under water stress and rewatering, Environ. Exp. Bot. 54 (2005) 155–162. [CrossRef] [Google Scholar]
  41. Ruiz-Sanchez M.C., Domingo R., Save R., Biel C., Torrecillas A., Effects of water stress and rewatering on leaf water relations of lemon plants, Biol. Plant. 39 (1997) 623–631. [CrossRef] [Google Scholar]
  42. Gonzalez-Altozano P., Castel J.R., Effects of regulated deficit irrigation on 'Clementina de Nules' citrus trees growth, yield and fruit quality, Acta Hortic. 537 (2000) 749–758. [Google Scholar]
  43. Maotani T., Machida Y., Changes in transpiration rate, leaf diffusion resistance and leaf water potential for satsuma mandarin (Citrus unshiu Marc.) trees during prolonged water stress and subsequent recovery, J. Agric. Meteorol. 32 (1977) 203–209. [CrossRef] [Google Scholar]
  44. Paço T.A., Conceição N., Ferreira M.I., Measurements and estimates of peach orchard evapotranspiration in Mediterranean conditions, Acta Hortic. 664 (2004) 505–512. [Google Scholar]
  45. Denmead O., Shaw R., Availability of soil water to plants as affected by soil moisture content and meteorological conditions, Agron. J. 54 (1962) 385–390. [CrossRef] [Google Scholar]