Free Access
Issue |
Fruits
Volume 69, Number 3, May-June 2014
|
|
---|---|---|
Page(s) | 247 - 258 | |
DOI | https://doi.org/10.1051/fruits/2014014 | |
Published online | 23 May 2014 |
- Bruhn C., Feldman N., Garlitz C., Harwood J., Ivans E., Marshall M., Riley A., Thurber D., Williamson E., Consumer perception of quality: apricots, cantaloupes, peaches, pears, strawberries and tomatoes, J. Food Qual. 14 (1991) 187–195. [CrossRef] [Google Scholar]
- Defilippi B.G., San Juand W., Valdésa H., Moya-Leónc M.A., Infanted R., Campos-Vargasa R., The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis, Postharvest Biol. Technol. 51 (2009) 212–219. [CrossRef] [Google Scholar]
- Crisosto C.H., Mitchell F.G., Zhiguo J., Susceptibility to chilling injury of peach, nectarine, plum cultivars grown in California, HortScience 34 (1999) 1116–1118. [Google Scholar]
- Kader A.A., Zagory D., Kerbel E.L., Modified atmosphere packaging of fruits and vegetables, Crit. Rev. Food Sci. 28 (1989) 1–30. [CrossRef] [Google Scholar]
- Hardenburg R.E., Watada A.E, Wang C.Y., The commercial storage of fruits, vegetables, and florist and nursery stocks, USDA Handbook 66, U.S.A., 1986. [Google Scholar]
- Lee L., Arul J., Lencki R., Castaigne F., A review on modified atmosphere packaging and preservation of fresh fruits and vegetables: physiological basis and practical aspects, part 2, Packaging Technol. Sci. 9 (1996) 1–17. [CrossRef] [Google Scholar]
- Caleb O.J., Mahajan P.V., Opara U.L., Witthuhn C.R., Modelling the effect of time and temperature on respiration rate of pomegranate arils (cv. ‘Acco’ and ‘Herskawitz’), J. Food Sci. 64 (2012) 49–54. [Google Scholar]
- Beaudry R.M., Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality, Postharvest Biol. Technol. 15 (1999) 293–303. [CrossRef] [Google Scholar]
- Beaudry R.M., Cameron A.C., Shirazi A., Dostal Lange D.L., Modified atmosphere packaging of blueberry fruit: effect of temperature on package O2 and CO2, J. Am. Soc. Hortic. Sci. 117 (1992) 436–441. [Google Scholar]
- Cameron A.C., Beaudry R.M., Banks N.H., Yelanich M.V., Modified atmosphere packaging of blueberry fruit: modelling respiration and package oxygen partial pressures as a function of temperature, J. Am. Soc. Hortic. Sci. 119 (1994) 534–539. [Google Scholar]
- Kosto I., Weksler A., Lurie S., Modified atmosphere storage of apricots, Alon Hanotea 56 (2002) 173–175. [Google Scholar]
- Mangaraj S., Goswami T.K., Mahajan P.V., Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review, Food Eng. Rev. 1 (2009) 133–158. [CrossRef] [Google Scholar]
- Varoquaux P., Gouble B., Ducamp M.N., Self G., Procedure to optimize modified atmosphere packaging for fruit, Fruits 57 (2002) 313–322. [CrossRef] [EDP Sciences] [Google Scholar]
- Pretel M.T., Souty M., Romojaro F., Use of passive and active modified atmosphere packaging to prolong the postharvest life of three varieties of apricot Prunus armeniaca L.), Eur. Food Res. Technol. 211 (2000) 191–198. [CrossRef] [Google Scholar]
- Sottile F., Peano C., Giuggioli N.R., Girgenti V., The effect of modified atmosphere packaging on the physical and chemical quality of fresh yellow plum cultivars, J. Food Agric. Environ. 11(2013) 132–136. [Google Scholar]
- Galli J.A., Soares M.B.B., Melo Martins A.L., Galli J.C., Storage of “Espada” mango fruits in modified atmosphere and cooling: effects on conservation, Fruits 68 (2013) 291–302. [CrossRef] [EDP Sciences] [Google Scholar]
- Sandhya, Modified atmosphere packaging of fresh produce: Current status and future need, LWT - Food Sci. Technol. 43 (2010) 381–392. [CrossRef] [Google Scholar]
- Del Nobile M.A., Baiano A., Benedetto A., Weightignan L., Respiration rate of minimally processed lettuce as affected by packaging, J. Food Eng. 74 (2006) 60–69. [CrossRef] [Google Scholar]
- Makino Y., Hirata T., Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone, Postharvest Biol. Technol. 10 (1997) 247–254. [CrossRef] [Google Scholar]
- Briassoulis D., Mistriotis A., Giannoulis A., Giannopoulos D., Optimized PLA-based EMAP systems for horticultural produce designed to regulate the targeted in-package atmosphere, Ind. Crops Prod. 48 (2013) 68–80. [CrossRef] [Google Scholar]
- Peano C., Girgenti V., Palma A., Fontanella E., Giuggioli N.R., Film type and MAP on cv. Himbo Top raspberry fruit quality, composition and volatiles, Ital. J. Food Sci. 25 (2013) 1–12. [Google Scholar]
- Koutsimanis G., Getter K., Behe B., Harte J., Almena E., Influences of packaging attributes on consumer purchase decisions for fresh produce, Appetite 59 (2012) 270–280. [CrossRef] [PubMed] [Google Scholar]
- Van Tuil R., Fowler P., Lawther M., Weber C.J., Properties of biobased packaging materials, in: Weber C.J. (Ed.), Biobased packaging materials for the food industry status and perspectives, KVL, Denmark, 2000, pp.8–33. [Google Scholar]
- Aday M.S., Caner C., The applications of ‘active packaging and chlorine dioxide’ for extended shelf life of fresh strawberries, Packag. Technol. Sci. 24 (2011) 123–136. [CrossRef] [Google Scholar]
- McGuire R.G., Reporting of objective color measurements, HortScience 27 (1992) 1254–1255. [Google Scholar]
- Kader A.A., Post-harvest technology of horticultural crops, Univ. Calif., Div. Agric. Nat. Res. Publ., Oakland, U.S.A., 2002. [Google Scholar]
- Cia P., Benato E.A., Sigrist J.M.M., Sarantopoulos C., Oliveira L.M., Padula M., Modified atmosphere packaging for extending the storage life of ‘Fuyu’ persimmon, Postharvest Biol. Technol. 42 (2006) 228–234. [CrossRef] [Google Scholar]
- Martinez-Romero D., Serrano M., Carbonell M., Burgos L., Riquelme F., Valero D., Effects of postharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot, J. Food Sci. 67 (2002) 1706 –1712. [CrossRef] [Google Scholar]
- Perez-Pastor A., Ruiz-Sanchez M.C., Martinez J.A., Nortes P.A., Artes F., Domingo R., Effect of deficit irrigation on apricot fruit quality at harvest and during storage, J. Sci. Food Agric. 87 (2007) 2409 –2415. [CrossRef] [Google Scholar]
- McLaren G.F., Fraser J.A., Burmeister D.M., Storage of apricots in modified atmospheres, Orchardist 20 (1997) 31–33. [Google Scholar]
- Brummell D.A., Cell wall disassembly in ripening fruit, Funct. Plant Biol. 33 (2006) 103–119. [CrossRef] [Google Scholar]
- Kerbel E.L., Kader A.A., Romani, R.J., Effects of elevated CO2 concentrations on glycolysis in intact ‘Bartlett’ pear fruit, Plant Physiol. 86 (1988) 1205–1209. [CrossRef] [PubMed] [Google Scholar]
- Kurz C., Carle R., Schieber A., Characterisation of cell wall polysaccharide profiles of apricots (Prunus armeniaca L.), peaches (Prunus persica L.), and pumkins (Cucurbita sp.) for the evaluation of fruit product authenticity, Food Chem. 106 (2008) 421–430. [CrossRef] [Google Scholar]
- Ruiz D., Egea J., Tomás-Barberán F.A., Gil M.I., Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color, J. Agric. Food Chem. (2005) 53 6368–6374. [Google Scholar]
- Goncalves B., Silva A.P., Moutinho-Pereira J., Bacelar E., Rosa E., Meyer A. S., Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries ( Prunus avium L.), Food Chem. 103 (2007) 976–984. [CrossRef] [Google Scholar]
- Cameron A.C., Talasila P.C., Joles D.J., Predicting the film permeability needs for modified-atmosphere packaging of lightly processed fruits and vegetables, HortScience 30 (1995) 25–34. [Google Scholar]
- Sousa-Gallagher M.J., Mahajan P.V., Integrative mathematical modelling for MAP design of fresh-produce: Theoretical analysis and experimental validation, Food Contr. 29 (2013) 444–450. [CrossRef] [Google Scholar]
- Weber C.J., Haugaard V., Festersen R., Bertelsen G., Production and applications of biobased packaging materials for the food industry, Food Add. Contam. 19 (2002) 172–177. [Google Scholar]