Free Access
Issue
Fruits
Volume 69, Number 4, July-August 2014
Page(s) 303 - 314
DOI https://doi.org/10.1051/fruits/2014019
Published online 11 July 2014
  1. Tiwari A., Imbalance in antioxidant defence and human disease: multiple approach of natural antioxidants therapy, Curr. Sci. 81 (2001) 1179–1187. [Google Scholar]
  2. Henle E.S., Linn S., Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide, J. Biol. Chem. 272 (1997) 19095–19098. [CrossRef] [PubMed] [Google Scholar]
  3. Marnett L.J., Oxyradicals and DNA damage, Carcinogenesis 21 (2000) 361–370. [CrossRef] [PubMed] [Google Scholar]
  4. Retsky K.L., Freeman M.W., Frei B., Ascorbic acid oxidation product(s) protect human low-density lipoprotein against atherogenetic modification. Anti-rather than prooxidant activity of vitamin C in the presence of transitionmetal ions, J. Biol. Chem. 268 (1993) 1304–1309. [PubMed] [Google Scholar]
  5. Braca A., Sortino C., Politi M., Morelli I., Mendez J., Antioxidant activity of flavonoids from Licania licaniaeflora, J. Ethnopharmacol. 79 (2002) 379–381. [Google Scholar]
  6. Macedo L.F., Rogero M.M., Guimarães J.P., Granato D., Lobato L.P., Castro I.A., Effect of red wines with different in vitro antioxidant activity on oxidative stress of high-fat diet rats, Food. Chem. 137 (2013) 122–129. [CrossRef] [PubMed] [Google Scholar]
  7. Alezandro M.R., Granato D., Genovese M. I., Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats, Food. Res. Int. 54 (2013) 650–659. [CrossRef] [Google Scholar]
  8. Kahl R., Kappus H., Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E, Z. Lebensm. Unters. Forsch. 196 (1993) 329–338. [CrossRef] [PubMed] [Google Scholar]
  9. Patel R.K., Singh A., Deka B.C., Soh-Shang (Elaeagnus latifolia): an under-utilized fruit of north east region needs domestication, ENVIS, Bull. Himalayan Ecol. 16 (2008) 1–2. [Google Scholar]
  10. Harborne J.B., Baxter H., Moss G.P., Phytochemical dictionary: a handbook of bioactive compounds from plants, Taylor & Francis Ltd., London, U.K., 1999. [Google Scholar]
  11. Kokate C.K., Purohit A.P., Gokhale S.B., Test book of Pharmacognosy, Nirali Prakashan, Pune, India, 2003. [Google Scholar]
  12. Das A., Chaudhuri D., Mandal N., Chatterjee A., Study of antioxidant and reactive oxygen species scavenging activity of the edible tuber of “Greater Yam” (Dioscorea alata L.) from North-East India, J. Asian Pharm. Clin. 5 (2012) 74–84. [Google Scholar]
  13. Ghate N.B., Chaudhuri D., Mandal N., In vitro assessment of Tinospora cordifolia stem for its antioxidant, free radical scavenging and DNA protective potentials, Int. J. Pharm. Bio. Sci. 4 (2013) 373–388. [Google Scholar]
  14. Chaudhuri D., Ghate N.B., Sarkar R., Mandal N., Phytochemical analysis and evaluation of antioxidant and free radical scavenging activity of Withania somnifera root, Asian J. Pharm. Clin. Res. 5 (2012) 193–199. [Google Scholar]
  15. Sarkar R., Hazra B., Mandal N., Anti-oxidative protection against iron overloaded-induced liver damage in mice by Cajanus cajan (L.) Millsp leaf extract, Indian J. Exp. Biol. 51 (2013) 165–173. [PubMed] [Google Scholar]
  16. Hazra B., Sarkar R., Biswas S., Mandal N., Antioxidant and iron chelating potential of Pongammia pinnata and its role in preventing free radical induced oxidative damage in plasmid DNA, Int. J. Phytomed. 3 (2011) 240–253. [Google Scholar]
  17. Hazra B., Biswas S., Mandal N., Antioxidant and free radical scavenging activity of Spondias pinnata, BMC Compl. Altern. Med. 8 (2008) 63. [Google Scholar]
  18. Beckman J.S., Chen H., Ischiropulos H., Crow J.P., Oxidative chemistry of peroxynitrite, Meth. Enzymol. 233 (1994) 229–240. [CrossRef] [Google Scholar]
  19. Hermes-Lima M., Nagy E., Ponka P., Schulman H.M., The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against OH-mediated strand breaks, Free Rad. Biol. Med. 25 (1998) 875–880. [CrossRef] [Google Scholar]
  20. Finkel T., Holbrook N.J., Oxidants, oxidative stress and the biology of ageing, Nature 408 (2000) 239–247. [CrossRef] [PubMed] [Google Scholar]
  21. Rop O., Mlcek J., Jurikova T., Sochor J., Kizek R., Antioxidant properties of saskatoon berry (Amelanchier alnifolia Nutt.) fruits, Fruits 68 (2013) 435–444. [CrossRef] [EDP Sciences] [Google Scholar]
  22. Lim Y.S., Lee S.S.H., Tan B.C., Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts, Fruits 68 (2013) 483–489. [CrossRef] [EDP Sciences] [Google Scholar]
  23. Yildirim A., Mavi A., Oktay M., Kara A.A., Algur O.F., Bilaloglu V., Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf ex DC), sage (Savia triloba L.), and black tea (Camellia sinensis) extracts, J. Agric. Food Chem. 48 (2000) 5030–5034. [Google Scholar]
  24. Kessler M., Ubeaud G., Jung L., Anti- and pro-oxidant activity of rutin and quercetin derivatives, J. Pharm. Pharmacol. 55 (2003) 131–142. [Google Scholar]
  25. Weisburger J.H., Eat to live, not live to eat, Nutrition 16 (2001) 767–773. [CrossRef] [Google Scholar]
  26. Jesus N.Z.T., Falcao H.S., Gomes I.F., Leite T.J.A., Lima G.R.M., Barbosa-Filho J.M., Tavares J.F., Silva M.S., Athayde-Filho P.F., Batista L.M., Tannins, peptic ulcer and related mechanisms, Int. J. Mol. Sci. 13 (2012) 3203–3228. [CrossRef] [PubMed] [Google Scholar]
  27. Pickhardt M., Gazova Z., Bergen V.M., Khlistunova I., Wang Y., Hascher A., Mandelkow E.M., Biernat J., Mandelkow E., Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells, J. Biol. Chem. 280 (2005) 3628–3635. [CrossRef] [PubMed] [Google Scholar]
  28. Jeremić S.R., Šehović S.F., Manojlović N.T., Marković Z.S., Antioxidant and free radical scavenging activity of purpurin, Monatsh. Chem. 143 (2012) 427–435. [CrossRef] [Google Scholar]
  29. Gülçina İ., Huyutb Z., Elmastaşc M., Hassan Y.A.E., Radical scavenging and antioxidant activity of tannic acid, Arab. J. Chem. 3 (2010) 43–53. [Google Scholar]
  30. Zhang M., Swarts S.G., Yin L., Liu C., Tian Y., Cao Y., Swarts M., Yang S., Zhang S.B., Zhang K., Ju S., Olek D.J.J., Schwartz L., Keng P.C., Howell R., Zhang L., Okunieff P., Antioxidant properties of quercetin, Adv. Exp. Med. Biol. 701 (2011) 283–289. [CrossRef] [PubMed] [Google Scholar]
  31. Kosanović M.M., Šeruga M., Jakobek L., Novak I., Electrochemical and antioxidant properties of (+)-catechin, quercetin and rutin, Croat. Chem. Acta 83 (2010) 197–207. [Google Scholar]
  32. Begum S., Naqvi S.Q., Ahmed A., Tauseef S., Siddiqui B.S., Antimycobacterial and antioxidant activities of reserpine and its derivatives, Nat. Prod. Res. 26 (2012) 2084–2088. [PubMed] [Google Scholar]
  33. Koleva I.I., Van Beek T.A., Linssen J.P.H., de Groot A., Evstatieva L.N., Screening of plant extracts for antioxidant activity: a comparative on three testing methods, Phytochem. Anal. 13 (2002) 8–17. [Google Scholar]
  34. Goyal A.K., Mishra T., Bhattacharya M., Kar P., Sen A., Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India, J. Biosci. 38 (2013) 797–803. [CrossRef] [PubMed] [Google Scholar]
  35. Halliwell B., Reactive oxygen species in living systems: Source, biochemistry, and role in human disease, Am. J. Med. 91 (1991) S14–S22. [CrossRef] [Google Scholar]
  36. Aruoma O.I., Halliwell B., Hoey B.M., Butter J., The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid, Free Rad. Bio. Med. 6 (1989) 593–597. [CrossRef] [Google Scholar]
  37. Usoh I., Akpan E., Etim E., Farombi E., Antioxidant action of dried flower extracts of Hibiscus sabdariffa L. on sodium arseite- induced oxidative stress rats, Pak. J. Nutr. 4 (2005) 135–141. [CrossRef] [Google Scholar]
  38. Dennis W.H., Olivieri V.P., Krusé C.W., The reaction of nucleotides with aqueous hypochlorous acid, Water Res. 13 (2003) 357–362. [CrossRef] [Google Scholar]
  39. Carr A.C., Vissers M.C., Domigan N.M., Winterbourn C.C, Modification of red cell membrane lipids by hypochlorous and haemolysis by preformed lipid chlorohydrins, Redox Rep. 3 (1997) 263–271. [PubMed] [Google Scholar]