Free Access
Volume 69, Number 5, September-October 2014
Page(s) 413 - 422
Published online 12 September 2014
  1. Saha M.N., Alam M.A., Aktar R., Jahangir R., In vitro free radical scavenging activity of Ixora coccinea L., Bangladesh J. Pharmacol. 3 (2008) 90–96. [Google Scholar]
  2. Shi H., Noguchi N., Niki E., Introducing natural antioxidants, in: Pokorny J., Yanishlieva N., Gordon M. (Eds.), Antioxidants in food, Practical applications, Woodhead Publ., Camb., U.K., 2001. [Google Scholar]
  3. Vaya J., Aviram M., Nutritional antioxidants: mechanism of action, analyses of activities and medical applications, Curr. Med. Chem.: Immunol. Endocr. & Metab. Agents 1 (2009) 99–117. [CrossRef] [Google Scholar]
  4. Kaur C., Kapoor H.C., Antioxidants in fruits and vegetables – the millennium’s health, J. Food Sci. Technol. 36 (2001) 703–725. [CrossRef] [Google Scholar]
  5. Rice-Evans C.A., Miller N.J., Paganga G., Structure-antioxidant activity relationships of flavonoids and phenolic acid, Free Radic. Biol. Med. 20 (1996) 933–956. [Google Scholar]
  6. Gordon A., Friedrich M., Da Matta V.M., Herbster Moura C.F., Marx F., Changes in phenolic composition, ascorbic acid and antioxidant capacity in cashew apple (Anacardium occidentale L.) during ripening, Fruits 67 (2012) 267-276. [CrossRef] [EDP Sciences] [Google Scholar]
  7. Meyers K.J., Watkins C.B., Pritts M.P., Liu R.H., Antioxidant and antiproliferative activities of strawberries, J. Agric. Food Chem. 51 (2003) 6887–6892. [CrossRef] [PubMed] [Google Scholar]
  8. Benvenuti S., Pellati F., Melegari M., Bertelli D., Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia, J. Food Sci. 69 (2004) 164–169. [Google Scholar]
  9. Hegedus A., Balogh E., Engel R., Sipos B.Z., Papp J., Blazovics A., Stefanovits-Bányai E., Comparative nutrient element and antioxidant characterization of berry fruit species and cultivars grown in Hungary, HortScience 43 (2008) 1711–1715. [Google Scholar]
  10. Garzon G.A., Riedl K.M., Schwartz S.J., Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth.), J. Food Sci. 74 (2009) 227–232. [CrossRef] [PubMed] [Google Scholar]
  11. Nour V., Trandafir I., Ionica M.E., Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars, Fruits 66 (2011) 353–362. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Katsube N., Iwashita K., Tsushida T., Yamaki K., Kobori M., Induction of apoptosis in cancer cells by bilberry ( Vaccinium myrtillus) and the anthocyanins, J. Agric. Food Chem. 51 (2003) 68−75. [CrossRef] [PubMed] [Google Scholar]
  13. Garzon G.A., Riedl K.M., Schwartz S.J., Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth.), J. Food Sci. 74 (2009) C227–C232. [CrossRef] [PubMed] [Google Scholar]
  14. Kammerer D.R., Schillmoller S., Maier O., Schieber A., Carle R., Colour stability of canned strawberries using black carrot and elderberry juice concentrates as natural colourants, Eur. Food Res. Technol. 224 (2007) 667–679. [CrossRef] [Google Scholar]
  15. Beekwilder J., Jonker H., Meesters P., Hall R.D., van der Meer I.M., de Vos C.H.R., Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites, J. Agric. Food Chem. 53 (2005) 3313–3320. [CrossRef] [PubMed] [Google Scholar]
  16. Meyers K.J., Watkins C.B., Pritts M.P., Liu R.H., Antioxidant and antiproliferative activities of strawberries, J. Agric. Food Chem. 51 (2003) 6887–6892. [CrossRef] [PubMed] [Google Scholar]
  17. Wattenberg L.W., Inhibition of carcinogenesis by minor dietary constituents, Cancer Res. 52 (1992) 2085−2091. [Google Scholar]
  18. Duthie G.G., Gardner P.Y., Kyle J.A.M., Plant polyphenols: Are they the new magic bullet?, Proc. Nutr. Soc. 62 (2003) 599−603. [CrossRef] [PubMed] [Google Scholar]
  19. Dai Q., Borenstein A.R., Wu Y., Jackson J.C., Larson E.B., Fruit and vegetable juices and Alzheimer's disease: The Kame Project, Am. J. Med. 119 (2006) 751−759. [Google Scholar]
  20. Määttä-Riihinen K.R., Kamal-Eldin A., Mattila P.H., González-Paramás A.M., Törrönen A.R., Distribution and content of phenolic compounds in eighteen scandinavian berry species, J. Agric. Food Chem. 52 (2004) 4477–4486. [Google Scholar]
  21. Giusti M.M., Wrolstad R.E., Anthocyanins: characterization and measurement with UV-visible spectroscopy, in: Wrolstald R.E. (Ed.), Current protocols in food analytical chemistry, John Wiley & Sons, N.Y., U.S.A., 2001. [Google Scholar]
  22. Cherif J.K., M’Rabet I., El Habiri M., Abidi R., Albrecht-Gary A.M., Mesure de l’activité antiradicalaire du jus et des peaux d’oranges tunisiennes par le radical DPPH, Fruits 61 (2006) 99–107. [CrossRef] [EDP Sciences] [Google Scholar]
  23. Re R., Pellegrini N., Proreggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231–1237. [CrossRef] [PubMed] [Google Scholar]
  24. Lim Y.S., Lee S.S.H., Tan B.C., Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts, Fruits 68 (2013) 483–489. [CrossRef] [EDP Sciences] [Google Scholar]
  25. Oyaizu M., Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine, Jpn. J. Nutr. 44 (1986) 307–315. [CrossRef] [Google Scholar]
  26. Chaieb N., González J.L., López-Mesas M., Bouslama M., Valiente M., Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia, Food Res. Int. 44 (2011) 970–977. [CrossRef] [Google Scholar]
  27. Tomsone L., Kruma Z., Alsina I., The application of hierarchical cluster analysis for classifying horseradish genotypes (Armoracia rusticana L.) roots, Chem. Technol. 4 (2012) 52–56. [Google Scholar]
  28. Wang S.Y., Lin H.S., Antioxidant activity in fruit and leaves of blackberry, raspberry and strawberry varies with cultivar and develop-mental stage, J. Agric. Food Chem. 48 (2000) 140–146. [CrossRef] [PubMed] [Google Scholar]
  29. Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis G., Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries, Food Chem. 102 (2007) 777–783. [CrossRef] [Google Scholar]
  30. Lee J., Durst R.W., Wrolstad R.E., Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study, J. AOAC Int. 88 (2005) 1269–1278. [PubMed] [Google Scholar]
  31. Sarma A.D., Sharma R., Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage, Phytochem. 52 (1999) 1313–1318. [CrossRef] [Google Scholar]
  32. Tsuda T., Horio F., Osawa T., The role of anthocyanins as an antioxidant under oxidative stress in rats, BioFactors 13 (2000) 133–139. [CrossRef] [PubMed] [Google Scholar]
  33. Wang G.P., Cahill S.M., Liu X., Girvin M.E., Grubmeyer C., Motional dynamics of the catalytic loop in OMP synthase, Biochem. 38 (1999) 284–295. [CrossRef] [Google Scholar]
  34. Tumbas V.T., Mandić A.I., Ćetković G.S., Đilas S.M., Čanadanović-Brunet J.M., HPLC analysis of phenolic acids in mountain germander (Teucrium montanum L.) extracts, APTEFF 35 (2004) 1–280. [Google Scholar]
  35. Fernández de Simón B., Pérez-Ilzarbe J., Hernández T., Gómez-Cordovés C., Estrella I., HPLC study of the efficiency of extraction of phenolic compounds, Chromatogr. 30 (1990) 35–37. [CrossRef] [Google Scholar]
  36. Soobrattee, M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T., Phenolics as potential antioxidant therapeutic agents: mechanism and actions, Mutat. Res. 579 (2005) 200–213. [Google Scholar]
  37. Stratil P., Klejdus B., Kubáň V., Determination of phenolic compounds and their antioxidant activity in fruits and cereals, Talanta 71 (2007) 1741–1751. [CrossRef] [PubMed] [Google Scholar]
  38. Wootton-Bearda P.C., Morana A., Ryan L., Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods, Food Res. Int. 44 (2011) 217–224. [CrossRef] [Google Scholar]
  39. Wu X., Beecher R., Holden J.M., Haytowitz D.B., Gebhardt S.E., Prior R.L., Lipophilic and hydrophilic antioxidant capacities of common foods in the United States, J. Agric. Food Chem. 52 (2004) 4026–4037. [Google Scholar]
  40. Prior R.L., Wu X., Schaich K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, J. Agric. Food Chem. 53 (2005) 4290–4302. [CrossRef] [PubMed] [Google Scholar]
  41. Ou B., Huang D., Hampsch-Woodill M., Flanagan J.A.J., Deemer E.K., Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study, J. Agric. Food Chem. 50 (2002) 3122–3128. [CrossRef] [PubMed] [Google Scholar]
  42. Pellegrini N., Serafini M., Colombi B., Del Rio D., Salvatore S., Bianchi M., Brighenti F., Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays, J. Nutr. 133 (2003) 2812–2819. [PubMed] [Google Scholar]
  43. Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramley P.M., Pridham J.B., The relative antioxidant activities of plant-derived polyphenolic flavonoids, Free Radic. Res. 22 (1995) 375–383. [CrossRef] [PubMed] [Google Scholar]
  44. Takahata Y., Kai Y., Tanaka M., Nakayama H., Yoshinaga M., Enlargement of the variances in amount and composition of anthocyanin pigments in sweet potato storage roots and their effect on the differences in DPPH radical-scavenging activity, Sci. Hortic. 2011 127 (4) 469–474. [CrossRef] [Google Scholar]
  45. Cho M.J., Howard L.R., Prior R.L., Clark J.R., Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry, J. Sci. Food Agric. 84 (2004) 1771–1782. [Google Scholar]