Free Access
Volume 70, Number 3, May-June 2015
Page(s) 135 - 142
Published online 22 April 2015
  1. Rakićević M., Miletić R., Pešaković M., Productivity of apple cv ‘Idared’ grown in the region of Čačak (Serbia), Sustainable fruit growing: From plant to product, Latvia State Institute of Fruit-Growing, Dobele, Latvia, 2008. [Google Scholar]
  2. Tresnik S., Parente S., State of the art of Integrated Crop Management & organic systems in Europe, with particular reference to pest management – Apple production, Pesticide Action Network (PAN) Europe, 2007. [Google Scholar]
  3. Drogue S., DeMaria F., Pesticide residues and trade, the apple of discord? Food Policy. 37 (2012) 641–649. [CrossRef] [Google Scholar]
  4. Butault J.P., Delame N., Jacquet F., Zardet G., L’utilisation des pesticides en France : état des lieux et perspectives de reduction, Notes et Études Socio-Économiques 35 (2011) 7–26. [Google Scholar]
  5. Hillocks R.J., Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture, Crop Prot. 31 (2012) 85–93. [CrossRef] [Google Scholar]
  6. Sparks T.C., Nauen R., IRAC: Mode of action classification and insecticide resistance management, Pesticide Biochem. Physiol. (2014). [Google Scholar]
  7. Blackman R.L., Eastop V.F., Aphids on the world’s crops: An identification and information guide, John Wiley & Sons, 1985. [Google Scholar]
  8. British Columbia Ministry of Agriculture F.a.F., Tree fruit production guide for commercial growers. Interior districts, British Columbia Ministry of Agriculture, Fisheries and Food, Victoria, BC, 2000. [Google Scholar]
  9. Devonshire A.L., The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae, Philos. Trans. R. Soc. B 353 (1998) 1677–1684. [CrossRef] [Google Scholar]
  10. Moores G.D., Devine G.J., Devonshire A.L., Insecticide-insensitive acetylcholinesterase can enhance esterase-based in Myzus persicae and Myzus nicotianae, Pestic. Biochem. Physiol. 49 (1994) 114–120. [CrossRef] [Google Scholar]
  11. Moores G.D., Gao X., Denholm I., Devonshire A.L., Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae), Pestic. Biochem. Physiol. 56 (1996) 102–110. [CrossRef] [Google Scholar]
  12. Zhu K.Y., He F.Q., Elevated esterases exhibiting arylesterase-like characteristics in an organophosphate-resistant clone of the greenbug, Schizaphis graminum (Homoptera : Aphididae), Pestic. Biochem. Physiol. 67 (2000) 155–167. [CrossRef] [Google Scholar]
  13. Owusu E.O., Horiike M., Hirano C., Polyacrylamide gel electrophoretic assessments of esterases in cotton aphid (Homoptera: Aphididae) resistance to dichlorvos, J Econ. Entomol. 89 (1996) 302–306. [CrossRef] [Google Scholar]
  14. Grafton-Cardwell E.E., et al., Cotton aphid have become resistant to commonly used pesticides, Calif. Agric. 46 (1992) 4–6. [Google Scholar]
  15. Puinean A.M., Foster S.P., Oliphant L., Denholm I., Field L.M., Millar M.S, Williamson M.S., Bass C., Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae, PLoS Genet. 6 (2010) e1000999. [CrossRef] [PubMed] [Google Scholar]
  16. Nabeshima T., Kozaki T., Tomita T., Kono Y., An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae, Biochem. Biophys. Res. Commun. 307 (2003) 15–22. [CrossRef] [PubMed] [Google Scholar]
  17. Li F., Han Z., Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover, Insect Biochem. Mol. Biol. 34 (2004) 397–405. [CrossRef] [PubMed] [Google Scholar]
  18. Martinez-Torres D., Foster S.P., Field L.M., Devonshire A.L., Williamson M.S., A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), Insect Mol. Biol. 8 (1999) 339–346. [CrossRef] [PubMed] [Google Scholar]
  19. Anstead J.A., Williamson M.S., Eleftherianos I., Denholm I., High-throughput detection of knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR, Insect Biochem. Mol. Biol. 34 (2004) 871–877. [CrossRef] [PubMed] [Google Scholar]
  20. Bass C., Pineau A.M., Andreau M., Cutter P., Daniels M., Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae, BMC Neurosci. 12 (2011) 51. [CrossRef] [PubMed] [Google Scholar]
  21. Needham P.H., Sawicki R.M., Diagnosis of resistance to organophosphorus insecticides in Myzus persicae (Sulz.), Nature 230 (1971) 125–126. [CrossRef] [Google Scholar]
  22. Delorme R., Auge D., Bethenod M.T., Villatte F., Insecticide resistance in a strain of Aphis gossypii from Southern France, Pestic Sci. 49 (1997) 90–96. [CrossRef] [Google Scholar]
  23. Dojnov B., Pavlović R., Božić, N., Margetić, A., Nenadović V., Ivanović J., Vujčić Z., Expression and distribution of cellulase, amylase and peptidase isoforms along the midgut of Morimus funereus L. (Coleoptera: Cerambycidae) larvae is dependent on nutrient substrate composition, Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 164 (2013) 259–267. [CrossRef] [Google Scholar]
  24. Dojnov B., Vujčić Z., Božić N., Margetić A., Vujčić M., Nenadović V., Ivanović I., Adaptations to captive breeding of the longhorn beetle Morimus funereus (Coleoptera: Cerambycidae); application on amylase study, J. Insect Conserv. 16 (2012) 239–247. [CrossRef] [Google Scholar]
  25. Silva C.P., Terra W.R., De Sá M.F., Samuels R.I., Isejima E.M., Bifano T.D., Almeida J.S., Induction of digestive alpha-amylases in larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) in response to ingestion of common bean alpha-amylase inhibitor 1 J. Insect Physiol. 47 (2001) 1283–1290. [CrossRef] [PubMed] [Google Scholar]
  26. Massoulie J., Pezzementi L., Bon S., Krejci E., Vallette F., Molecular and cellular biology of cholinesterases, Prog. Neurobiol. 41 (1993) 31–91. [CrossRef] [PubMed] [Google Scholar]
  27. Eldefrawi A.T., Acetylcholinesterases and anticholinesterases, in: Kerkut G.A., Gilbert L.I. (Eds.), Comp. Insect Physiol. Biochem. Pharmacol., Pergamon, New York, 1985. [Google Scholar]
  28. Mutero A., Pralavorio M., Bride J.M., Fournier D., Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase, Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 5922–5926. [CrossRef] [Google Scholar]
  29. Georghiou G.P., Overview of insecticide resistance. In: Green M.B., LeBaron H.M., Moberg W.K. (Eds.), Managing resistance to agrochemicals, Am. Chem. Soc., Washington, DC, 1990. [Google Scholar]
  30. Khodzhaev S.T., Roslavtseva S.A., Abdulaev E., Sobchak M.N., Resistance of the cotton aphid to insecticides, Z. Rastenii 12 (1985) 30. [Google Scholar]
  31. Sun Y.Q., Feng G.-L., Yuang J.-G., Zhu P., Gong K.-Y., et al., Biochemical mechanism of resistance of cotton aphids to organophosphorus insecticides, Acta Entomol. Sin. 30 (1987) 13–20. [Google Scholar]
  32. Takada H., Murakami Y., Esterase variation and insecticide resistance in Japanese Aphis gossypii, Entomol. Exp. Appl. 48 (1988) 37–41. [CrossRef] [Google Scholar]
  33. Lowery D.T., Smirle M.J., Foottit R.G., Zurowski C.L., Pervea E.H., Baseline susceptibilities to imidacloprid for green apple aphid and spirea aphid (Homoptera: Aphididae) collected from apple in the Pacific Northwest, J. Econ. Entomol. 98 (2005) 188–194. [CrossRef] [PubMed] [Google Scholar]
  34. Lowery D.T., Smirle M.J., Foottit R.G., Beers E.H., Susceptibilities of apple aphid and spirea aphid collected from apple in the Pacific Northwest to selected insecticides, J. Econ. Entomol. 99 (2006) 1369–1374. [CrossRef] [PubMed] [Google Scholar]
  35. Smirle M.J., Zurowski C.L., Lowery D.T., Foottit R.G., Relationship of insecticide tolerance to esterase enzyme activity in Aphis pomi and Aphis spiraecola (Hemiptera: Aphididae), J. Econ. Entomol. 103 (2010) 374–378. [CrossRef] [PubMed] [Google Scholar]
  36. Finney D.J., Probit Analysis, Cambridge University Press, Cambridge, UK, 1971. [Google Scholar]
  37. Devonshire A.L., Devine G.J., Moores G.D., Comparison of microplate esterase assays and immunoassay for identifying insecticide resistant variants of Myzuspersicae (Homoptera: Aphididae), Bull. Entomol. Res. 82 (1992) 459–463. [CrossRef] [Google Scholar]
  38. Rufingier C., Pasteur N., Lagnel J., Martin C., Navajas M., Mechanisms of insecticide resistance in the aphid Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae) from France, Insect Biochem. Mol. Biol. 29 (1999) 385–391. [CrossRef] [PubMed] [Google Scholar]
  39. Hedley D., Khambay B.P.S., Hooper A.M., Thomas R.D., Devonshire A.L., Proinsecticides effective against insecticide-resistant peach-potato aphid (Myzus persicae (Sulzer)), Pestic. Sci. 53 (1998) 201–208. [CrossRef] [Google Scholar]
  40. Siegfried B.D., Swanson J.J., Devonshire A.L., Immunological detection of greenbug (Schizaphis graminum) esterases associated with resistance to organophosphate insecticides Pestic. Biochem. Physiol. 57 (1997) 165–170. [Google Scholar]
  41. Han Z., Moores G.D., Denholm I., Devonshire A.L., Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii Glover, Pestic. Biochem. Physiol. 61 (1998) 164–171. [CrossRef] [Google Scholar]
  42. Sakata K., Miyata T., Biochemical Characterization of Carboxylesterase in the Small Brown Planthopper Laodelphax striatellus (Fallen), Pestic. Biochem. Physiol. 50 (1994) 247–256. [CrossRef] [Google Scholar]