Free Access
Volume 70, Number 4, July-August 2015
Page(s) 191 - 199
Published online 27 May 2015
  1. Ge Y., Dai Q., Wan D., Liu Q., Mei Z., Relaxant effect of 1-butanol fraction from Elaeagnus pungens leaf through inhibiting L-type Ca2+ channel on guinea pig tracheal smooth muscle, J. Ethnopharmacol. 150 (2013) 196–201. [CrossRef] [PubMed] [Google Scholar]
  2. Wu M.-C., Hu H.-T., Yang L., Yang L., Proteomic analysis of up-accumulated proteins associated with fruit quality during autumn olive (Elaeagnus umbellata) fruit ripening, J. Agric. Food Chem. 59 (2011) 577–583. [CrossRef] [PubMed] [Google Scholar]
  3. Saboonchian F., Jamei R., Hosseini Sarghein S., Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower), Avicenna J. Phytomedicine 4 (2014) 231–238. [Google Scholar]
  4. Bendaikha S., Gadaut M., Harakat D., Magid A., Acylated flavonol glycosides from the flower of Elaeagnus angustifolia L., Phytochemistry 103 (2014) 129–136. [CrossRef] [PubMed] [Google Scholar]
  5. Bhuvaneswari V., Nagini S., Lycopene: a review of its potential as an anticancer agent, Curr. Med. Chem. Anticancer. Agents 5 (2005) 627–635. [CrossRef] [PubMed] [Google Scholar]
  6. Kadir M., Kuerban-jiang B., Research on fat and protein compositions in seeds of wild Elaeagnus angustifolia from Xinjiang Uigur Autonomous Region, Med. Plant 2 (2011) 51–53. [Google Scholar]
  7. Ayaz F.A., Bertoft E., Sugar and phenolic acid composition of stored commercial oleaster fruits, J. Food Compos. Anal. 14 (2001) 505–511. [CrossRef] [Google Scholar]
  8. Fordham I.M., Clevidence B.A., Wiley E.R., Zimmerman R.H., Fruit of Autumn olive: a rich source of lycopene, HortScience 36 (2001) 1136–1137. [Google Scholar]
  9. Abizov E.A., Tolkachev O.N., Mal’tsev S.D., Abizova E.V., Composition of biologically active substances isolated from the fruits of Russian olive (Elaeagnus angustifolia) introduced in the European part of Russia, Pharm. Chem. J. 42 (2009) 696−698. [CrossRef] [Google Scholar]
  10. Patil R.P., Pai S.R., Pawar N.V., Shimpale V.B., Patil R.M., Nimbalkar M.S., Chemical characterization, mineral analysis, and antioxidant potential of two underutilized berries (Carissa carandus and Eleagnus conferta) from the Western Ghats of India, Crit. Rev. Food Sci. Nutr. 52 (2012) 312–20. [CrossRef] [PubMed] [Google Scholar]
  11. Chen Q., Chen J., Du H., Li Q., Chen J., Zhang G., Liu H., Wang J., Structural characterization and antioxidant activities of polysaccharides extracted from the pulp of Elaeagnus angustifolia L., Int. J. Mol. Sci. 15 (2014) 11446–11455. [CrossRef] [PubMed] [Google Scholar]
  12. Liao C.-R., Kuo Y.-H., Ho Y.-L., Wang C.-Y., Yang C.-S., Lin C.-W., Chang Y.-S., Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells, Molecules 19 (2014) 9515–9534. [CrossRef] [PubMed] [Google Scholar]
  13. Sasikumar J.M., Patharaj J., Adithya E.S., Christabel P.H., Shamna R., Antioxidant capacity and phenolic content of Elaeagnus kologa schlecht. an underexploited fruit from India, Free Radicals Antioxidants 2 (2012) 28–35. [CrossRef] [Google Scholar]
  14. Khattak K.F., Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry, J. Med. Plants Res. 6 (2012) 5196–5203. [Google Scholar]
  15. Panja S., Chaudhuri D., Baban Ghate N., Minh H.L., Mandal N., In vitro assessment of phytochemicals, antioxidant and DNA protective potential of wild edible fruit of Elaeagnus latifolia L., Fruits 69 (2014) 303–314. [CrossRef] [EDP Sciences] [Google Scholar]
  16. Liao C.-R., Ho Y.-L., Huang G.-J., Yang Y.S., Chao C.-Y., Chang Y.-S., Kuo Y.-H., One lignanoid compound and four triterpenoid compounds with anti-inflammatory activity from the leaves of Elaeagnus oldhamii maxim, Molecules 18 (2013) 13218–13227. [CrossRef] [PubMed] [Google Scholar]
  17. Nikniaz Z., Ostadrahimi A., Mahdavi R., Ebrahimi A.A., Nikniaz L., Effects of Elaeagnus angustifolia L. supplementation on serum levels of inflammatory cytokines and matrix metalloproteinases in females with knee osteoarthritis, Complement. Ther. Med. 22 (2014) 864–869. [CrossRef] [PubMed] [Google Scholar]
  18. Ebrahimi A.A., Nikniaz Z., Ostadrahimi A., Mahdavi R., Nikniaz L., The effect of Elaeagnus angustifolia L. whole fruit and medulla powder on women with osteoarthritis of the knee: A randomized controlled clinical trial, Eur. J. Integr. Med. 6 (2014) 672–679. [CrossRef] [Google Scholar]
  19. Esmaeili A., Niknam S., Characterization of nanocapsules containing Elaeagnus angustifolia L. extract prepared using an emulsion-diffusion process, Flavour. Fragr. J. 28 (2013) 309–315. [CrossRef] [Google Scholar]
  20. Esmaeili A, Niknam S., Preparation of polyamide nanocapsules of Elaeagnus angustifolia L. delivery with in vivo studies, Ind. Crops Prod. 55 (2014) 49–55. [CrossRef] [Google Scholar]
  21. Ahmadiani A., Hosseiny J., Semnanian S., Javan M., Saeedi F., Kamalinejad M., Saremi S., Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract, J. Ethnopharmacol. 72 (2000) 287–292. [CrossRef] [PubMed] [Google Scholar]
  22. Ramezani M., Hosseinzadeh H., Daneshmand N., Antinociceptive effect of Elaeagnus angustifolia fruit seeds in mice, Fitoterapia 72 (2001) 255–262. [CrossRef] [PubMed] [Google Scholar]
  23. Hosseinzadeh H., Ramezani M., Namjo N., Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice. J Ethnopharmacol 84 (2003) 275–278. [CrossRef] [PubMed] [Google Scholar]
  24. Matsumoto M., Cyganek I., Sanghani P.C., Cho W.K., Liangpunsakul S., Crabb D.W., Ethanol metabolism by HeLa cells transduced with human alcohol dehydrogenase isoenzymes: control of the pathway by acetaldehyde concentration, Alcohol Clin. Exp. Res. 35 (2011) 28–38. [CrossRef] [PubMed] [Google Scholar]
  25. Sabir M.S., Ahmad D.S., Hussain I.M., Tahir K.M., Antibacterial activity of Elaeagnus umbellata (Thunb.) a medicinal plant from Pakistan, Saudi Med. J. 28 (2007) 259–63. [PubMed] [Google Scholar]
  26. Si C., Zhang Y., Zhu Z., Liu P.T., Hui L.F., Liu Z., Antibacterial activity of Elaeagnus angustifolia Bark, Planta Med. 76 (2010) P88. [CrossRef] [Google Scholar]
  27. Khan S.U., Khan A, Shah A.A., Liu P.T., Hui L.F., Liu Z., Heavy metals content, phytochemical composition, antimicrobial and insecticidal evaluation of Elaeagnus angustifolia, Toxicol. Ind. Health. (2013), doi: 10.1177/0748233713498459. [Google Scholar]
  28. Merculieff Z., Ramnath S., Sankoli S.M., Venkataramegowda S., Murthy G.S., Ceballos R.M., Phytochemical, antioxidant and antibacterial potential of Elaeagnus kologa (Schlecht.) leaf, Asian Pac. J. Trop. Med. 7S1 (2014) S599–S602. [CrossRef] [PubMed] [Google Scholar]
  29. Okmen G., Turkcan O., A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves, Afr. J. Tradit. Complement Altern. Med. 11 (2014) 116–120. [PubMed] [Google Scholar]
  30. Wang S.Y., Bowman L., Ding M., Variations in free radical scavenging capacity and antiproliferative activity among different genotypes of autumn olive (Elaeagnus umbellata), Planta Med. 73 (2007) 468–77. [CrossRef] [PubMed] [Google Scholar]
  31. Roomi M.W., Kalinovsky T., Monterrey J., Rath M., Niedzwiecki A., In vitro modulation of MMP-2 and MMP-9 in adult human sarcoma cell lines by cytokines, inducers and inhibitors, Int. J. Oncol. 43 (2013) 1787–98. [PubMed] [Google Scholar]
  32. Li L.-H., Baek I.K., Kim J.H., Kang K.H., Koh Y.S., Jung Y.D., Cho C.K., Choi S.Y., Shin B.A., Methanol extract of Elaeagnus glabra, a Korean medicinal plant, inhibits HT1080 tumor cell invasion, Oncol. Rep. 21 (2009) 559–63. [PubMed] [Google Scholar]
  33. Lee M.S., Lee Y.-K., Park O.J., Cherry silver berry (Elaeagnus multiflora) extracts exert antiinflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells, Food Sci. Biotechnol. 19 (2010) 1673–1677. [CrossRef] [Google Scholar]
  34. Gürbüz I., Ustün O., Yesilada E., Sesik E., Kutsal O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey, J. Ethnopharmacol. 88 (2003) 93–97. [CrossRef] [PubMed] [Google Scholar]
  35. Beigom Taheri J., Anbari F., Maleki Z., Boostani S., Zarghi A., Pouralibaba F., Efficacy of Elaeagnus angustifolia topical gel in the treatment of symptomatic oral lichen planus, J. Dent. Res. Dent. Clin. Dent. Prospects 4 (2010) 29–32. [PubMed] [Google Scholar]
  36. Mehrabani Natanzi M., Pasalar P., Kamalinejad M., Dehpour A.R., Tavangar S.M., Sharifi R., Ghanadian N., Rahimi-Balaei M., Gerayesh-Nejad S., Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats, Acta Med. Iran 50 (2012) 589–96. [PubMed] [Google Scholar]
  37. Guo X., Yang L., Hu H., Yang L., Cloning and expression analysis of carotenogenic genes during ripening of autumn olive fruit (Elaeagnus umbellata), J. Agric. Food Chem. 57 (2009) 5334−9. [CrossRef] [PubMed] [Google Scholar]
  38. Sahan Y., Neslihan Dundar A., Aydin E., Kilci A., Dulger D., Kaplan F.B., Gocmen D., Celik G., Characteristics of Cookies Supplemented with Oleaster (Elaeagnus angustifolia L.) flour. I. Physicochemical, sensorial and textural properties, J. Agric. Sci. 5 (2013) 160. [Google Scholar]
  39. Obón C., Rivera D., Alcaraz F., Attieh L. Beverage and culture. “Zhourat”, a multivariate analysis of the globalization of a herbal tea from the Middle East, Appetite 79 (2014) 1–10. [CrossRef] [PubMed] [Google Scholar]
  40. Çakmakçı S., Topdaş E.F., Kalın P., Han H., Şekerci P., Köse L.P., Gülçin I., Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream, Int. J. Food Sci. Technol. (2014), DOI: 10.1111/ijfs.12637. [Google Scholar]
  41. Geetha S., Sai Ram M., Singh V., Ilavazhagan G., Sawhney R.C., Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides) – an in vitro study, J. Ethnopharmacol. 79 (2002) 373–378. [CrossRef] [PubMed] [Google Scholar]
  42. Yang B., Kalimo K.O., Mattila L.M., Kallio S.E., Katajisto J.K., Peltola O.J., Kallio H.P., Effects of dietary supplementation with sea buckthorn (Hippophaë rhamnoides) seed and pulp oils on atopic dermatitis, J. Nutr. Biochem. 10 (1999) 622–630. [CrossRef] [PubMed] [Google Scholar]
  43. Zheng R.-X., Xu X.-D., Tian Z., Yang J.-S., Chemical constituents from the fruits of Hippophae rhamnoides, Nat. Prod. Res. 23 (2009) 1451–6. [CrossRef] [PubMed] [Google Scholar]
  44. Gupta R., Flora S.J.S., Protective effects of fruit extracts of Hippophae rhamnoides L. against arsenic toxicity in Swiss albino mice, Hum. Exp. Toxicol. 25 (2006) 285–295. [CrossRef] [PubMed] [Google Scholar]
  45. Taysi S., Gumustekin K., Demircan B., Aktas O., Oztasan N., Akcay F., Suleyman H., Akar S., Dane S., Gul M., Hippophae rhamnoides attenuates nicotine-induced oxidative stress in rat liver, Pharm. Biol. 48 (2010) 488–93. [CrossRef] [PubMed] [Google Scholar]
  46. Xiao M., Qiu X., Yue D., Cai Y., Mo Q., Influence of hippophae rhamnoides on two appetite factors, gastric emptying and metabolic parameters, in children with functional dyspepsia, Hell J. Nucl. Med. 16:38–43. [PubMed] [Google Scholar]
  47. Chen C., Xu X.-M., Chen Y., Yu M.-Y., Wen F.-Y., Zhang H., Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis), Food Chem. 141 (2013) 1573–1579. [CrossRef] [PubMed] [Google Scholar]
  48. Burns Kraft T.F., Dey M., Rogers R.B., Ribnicky D.M., Gipp D.M., Cefalu W.T., Raskin I, Lila M.A., Phytochemical composition and metabolic performance-enhancing activity of dietary berries traditionally used by Native North Americans, J. Agric. Food Chem. 56 (2008) 654–660. [CrossRef] [PubMed] [Google Scholar]
  49. Yoshida T., Ito H., Hatano T., Kurata M., Nakanishi T., Inada A., Murata H., Inatomi Y., Matsuura N., Ono K., Nakane H., Noda M., Lang F.A., Murata J., New hydrolyzable tannins, shephagenins A and B, from Shepherdia argentea as HIV-1 reverse transcriptase inhibitors, Chem. Pharm. Bull (Tokyo) 44 (1996) 1436–1439. [CrossRef] [PubMed] [Google Scholar]
  50. Riedl K.M., Choksi K., Wyzgoski F.J., Scheerens J.C., Schwartz S.J., Reese R.N., Variation in lycopene and lycopenoates, antioxidant capacity, and fruit quality of buffaloberry (Shepherdia argentea [Pursh]Nutt.), J. Food Sci. 78 (2013) C1673–C1679. [CrossRef] [PubMed] [Google Scholar]
  51. Welcome to the PLANTS Database |USDA PLANTS. Accessed 22 Nov 2014. [Google Scholar]
  52. Moore M.R., Buckley D.S., Klingeman W.E., Saxton A.M., Distribution and growth of autumn olive in a managed forest landscape, For. Ecol. Manage. 310 (2013) 589–599. [CrossRef] [Google Scholar]
  53. Wang Y., Qin Y., Du Z., Yan G., Genetic diversity and differentiation of the endangered tree Elaeagnus mollis Diels (Elaeagnus L.) as revealed by simple sequence repeat (SSR) markers. Biochem. Syst. Ecol. 40 (2012) 25–33. [CrossRef] [Google Scholar]
  54. Gaskin J.F., Hufbauer R.A., Bogdanowicz S.M., Microsatellite markers for Russian olive (Elaeagnus angustifolia; Elaeagnaceae), Appl. Plant. Sci. (2013), DOI: 10.3732/apps.1300013. [Google Scholar]
  55. Rhodes C.J., Feeding and healing the world: through regenerative agriculture and permaculture. Sci. Prog. 95 (2012) 345–446. [CrossRef] [PubMed] [Google Scholar]
  56. Janiczak C., Ben Falk: The resilient farm and homestead: an innovative permaculture and whole systems design approach, J. Environ. Stud. Sci. 4 (2014) 271–272. [CrossRef] [Google Scholar]
  57. Thompson P.B., Kaplan D.M., Encyclopedia of food and agricultural ethics. Springer, 2014. [Google Scholar]
  58. Dubovyk O., Menz G., Khamzina A., Land suitability assessment for afforestation with Elaeagnus angustifolia L. In degraded agricultural areas of the lower amudarya river basin, Land. Degrad. Develop. (2014), DOI: 10.1002/ldr.2329 [Google Scholar]
  59. Sastre J., Lluch-Bernal M., Bustillo A.M.G., Carnés J., Marañón F., Casanovas M., Fernández-Caldas E., Allergenicity and cross-reactivity of Russian olive pollen (Eleagnus angustifolia), Allergy 59 (2004) 1181–1186. [CrossRef] [PubMed] [Google Scholar]
  60. Seeram N.P., Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease, J. Agric. Food Chem. 56 (2008) 627–629. [CrossRef] [Google Scholar]