Free Access
Issue
Fruits
Volume 70, Number 5, September-October 2015
Page(s) 271 - 280
DOI https://doi.org/10.1051/fruits/2015028
Published online 07 September 2015
  1. Van Dyk J.S., Gama R., Morrison D., Swart S., Pletschke B.I., Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation, Renew Sust. Energ. Rev. 26 (2013) 521–531. [CrossRef] [Google Scholar]
  2. Sousa F.W., Oliveira A.G., Ribeiro J.P., Rosa M.F., Keukeleire D., Nascimento, R.F, Green coconut shell applied as adsorbent for removal of toxic metal ions used fixed-bed column technology, J. Environ. Manage. 91 (2010) 1634–1640. [CrossRef] [PubMed] [Google Scholar]
  3. Velazqez-Jiminez L.H., Pavlick A., Rangel-Mendez J.R., Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water, Ind. Crop Prod. 43 (2013) 200–206. [CrossRef] [Google Scholar]
  4. Šćiban M., Klašnja M., Škrbić B., Adsorption of copper ions from water by modified agricultural by-products, Desalination 229 (2008) 170–180. [CrossRef] [Google Scholar]
  5. Pehlivan E., Altun T., Parlayici S., Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution, Food Chem. 135 (2012) 2229–2234. [CrossRef] [PubMed] [Google Scholar]
  6. Rashed M.N., Fruit stones from industrial waste for the removal of lead ions from polluted water, Environ. Monit. Assess. 119 (2006) 31–41. [CrossRef] [PubMed] [Google Scholar]
  7. Leyva-Ramos R., Landin-Rodriguez L.E., Leyva-Ramos S., Medellin-Castillo N.A., Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium(II) from water solution, Chem. Eng. J. 180 (2012) 113–120. [CrossRef] [Google Scholar]
  8. Alslaibi T.M., Abustan I., Ahmad A.M., Foul A.A., Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater, Environ. Prog. Sustain. Energy. 33 (4) (2013) 1074–1085. [Google Scholar]
  9. Kobya M., Demirbas E., Senturk E., Ince M., Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol. 96 (2005) 1518–1521. [CrossRef] [PubMed] [Google Scholar]
  10. Gautam R.K., Mudhoo A., Lofrano G., Chattopadhyaya M.C., Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration, J. Environ. Chem. Eng. 2 (2014) 239–259. [CrossRef] [Google Scholar]
  11. Alslaibi T.M., Abustan I., Ahmad A.M., Foul A.A., A review: Production of activated carbon from agricultural byproducts via conventional and microwave heating, J. Chem. Technol Biotechnol. 88 (2013) 1183–1190. [CrossRef] [Google Scholar]
  12. Alslaibi T.M., Abustan I., Ahmad A.M., Foul A.A., Heavy metals removal from wastewater using agricultural wastes as adsorbents: a review, IJCEE 5 (2014) 7–10. [Google Scholar]
  13. Alslaibi T.M., Abustan I., Ahmad A.M., Foul A.A., Review: Comparison of agricultural by-products activated carbon production methods using surface area response, CJASR 2 (2013) 18–27. [Google Scholar]
  14. Villaescusa I., Fiol N., Martinez M., Miralles N., Pocj J., Serarols J., Removal of copper and nickel ions from aqueous solution by grape stalks wastes, Water Res. 38 (2004) 992–1002. [CrossRef] [PubMed] [Google Scholar]
  15. Annadurai A., Juang R.S., Lee D.J., Adsorption of heavy metals from water using banana and orange peels, Water Sci. Technol. 47 (2002) 185–190. [Google Scholar]
  16. Lee S.H., Shon J.S., Chung H.S., Lee M.Y., Jang J.W., Effect of chemical modification of charboxyl groups in apple residues on metal ion binding, Kor. J. Chem. Eng. 16 (1999) 576–580. [CrossRef] [Google Scholar]
  17. Lopičić Z., Milojković J., Šoštarić T., Petrović M., Mihajlović M., Lačnjevac Č., Stojanović M., Influence of pH value on Cu(II) biosorption by lignocellulose peach shell waste material, Hem. Ind. 67 (2013) 1007–1015. [CrossRef] [Google Scholar]
  18. Torab-Mostaedi M., Asadollahzadeh M., Hemmati A., Khosravi A., Equilibrium, kinetic and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel, J. Taiwan Ins. Chem. Eng. 44 (2013) 295–302. [CrossRef] [Google Scholar]
  19. El-Ashtoukhy E-S.Z.,Amin N.K., Abdelwahab O., Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent, Desalination 223 (2008) 162–173. [CrossRef] [Google Scholar]
  20. Schiewer S., Patil S.B., Modeling the effect of pH on biosorption of heavy metals by citrus peels, J. Hazard. Mater. 157 (2008) 8–17. [CrossRef] [PubMed] [Google Scholar]
  21. Statistical office of the Republic of Serbia (2014) http://webrzs.stat.gov.rs/WebSite/. [Google Scholar]
  22. Tsibranska I., Hristova E., Modelling of heavy metal adsorption into activated carbon from apricot stones in fluidized bed, Chem. Eng. Process: Process Intensification 49 (2010) 1122−1127. [CrossRef] [Google Scholar]
  23. Özçimen D., Adsorption of copper(II) ions onto hazelnut shell and apricot stone activated carbons, Adsorpt Sci Technol 28 (2010) 327–340. [CrossRef] [Google Scholar]
  24. Kazemipour M., Ansari M., Tajrobehkar S., Majdzadeh M., Kermani H.R., Removal of lead, cadmium, zink and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell and apricot stone, J Hazard Mater 150 (2008) 322–327. [CrossRef] [PubMed] [Google Scholar]
  25. Yildiz F., New technologies in apricot processing. 3 J. Standard, Apricot Special Issue, Ankara, (1994) 67–69. [Google Scholar]
  26. Femenia A., Rossello C., Mulet A., Canellas J., Chemical Composition of Bitter and Sweet Apricot Kernels, J. Agric. Food Chem. 43 (1995) 356–361. [CrossRef] [Google Scholar]
  27. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309–319. [CrossRef] [Google Scholar]
  28. Beauchemin A.K., Using ADF and ND in dairy cattle diet formulation-a western Canadian perspective, Anim. Feed Sci. Tech. 58 (1996) 101–111. [CrossRef] [Google Scholar]
  29. Milonjić S.K., Ruvarac A.LJ., The heat of immersion of natural magnetite in aqueous solutions, Thermochim. Acta. 2 (1975) 261–266. [CrossRef] [Google Scholar]
  30. Milojković J.V., Mihajlović M.L., Stojanović M.D., Lopičić Z.R., Petrović M.S., Šoštarić T.D., Ristić M.D., Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study, J. Chem. Technol. Biotechnol. 89 (2014) 662–670. [CrossRef] [Google Scholar]
  31. Leyva-Ramos R., Bernal-Jacome L.A., Acosta-Rodriguez I., Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob, Sep. Purif. Technol. 45 (2005) 41–49. [CrossRef] [Google Scholar]
  32. Alslaibi T.M., Abustan I., Ahmad A.M., Foul A.A., Microwave irradiated and thermally heated olive stone activated carbon for nickel adsorption from synthetic wastewater: a comparative study, AlChE J. 60 (2014) 237–255. [CrossRef] [Google Scholar]
  33. Iqbal M., Saeed A., Zafar S.I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste, J. Hazard. Mater. 164 (2009) 161−171. [CrossRef] [PubMed] [Google Scholar]
  34. Laurichesse S., Huillet C., Avérous L., Original polyols based on organosolv lignin and fatty acids: new bio-based building blocks for segmented polyurethane synthesis, Green Chem. 16 (2014) 3958–3970. [CrossRef] [Google Scholar]
  35. Bilba K., Arsene M.A., Quensanga A., Study of banana and coconut fibres- botanical composition, thermal degradation and textural observations, Bioresour. Technol. 98 (2007) 58–68. [CrossRef] [PubMed] [Google Scholar]
  36. Pehlivan E., Altun T., Cetin S., Iqbal B.M., Lead sorption by waste biomass of hazelnut and almond shell, J. Hazard. Mater. 167 (2009) 1203–1208. [CrossRef] [PubMed] [Google Scholar]
  37. Bodirlau R., Teaca C.A., Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydride, Rom. J. Phys. 54 (2009) 93–104. [Google Scholar]
  38. Faix O., Classification of lignins from different botanical origins by FT-IR Spectroscopy, Holzforschung. 45 (1991) 21–27. [CrossRef] [Google Scholar]
  39. Martinez M., Miralles N., Hidalgo S., Fiol N., Villaescusa I., Poch J., Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste, J. Hazard. Mater. 133 (2006) 203–211. [CrossRef] [PubMed] [Google Scholar]
  40. Poletto M., Pistor V., Zattera A.J., Structural Characteristics and Thermal Properties of Native Cellulose, in: Van de Ven T., GodboutL. (Eds) Cellulose – Fundamental Aspects, In Tech, chap. 2, 2013. [Google Scholar]
  41. Han R., Zhang L., Song C., Zhang M., Zhu H., Zhang J.L., Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode, Carbohydr. Polym. 79 (2010) 1140–1149. [CrossRef] [Google Scholar]
  42. Carmen G.B., Dominique B., Richard J.A.G., van Dam J.E.G., Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy, Ind. Crops Prod. 20 (2004) 205–218. [CrossRef] [Google Scholar]
  43. Alslaibia T.M., Abustan I., Ahmad M.A., Foulc A.A., Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste, Desalination Water Treat. 52 (2014) 7887–7897. [CrossRef] [Google Scholar]
  44. Božić D., Stanković V., Gorgievski M., Bogdanović G., Kovačević R. Adsorption of heavy metal ions by sawdust of deciduous trees, J. Hazard. Mater. 171 (2009) 684–692. [CrossRef] [PubMed] [Google Scholar]
  45. Wang J., Chen C., Biosorbents for heavy metals removal and their future. Biotech. Adv. 27 (2009) 195–226. [CrossRef] [Google Scholar]
  46. Alslaibi T.M., Abustan I., Ahmad M.A., Foul A.A., Cadmium removal from aqueous solution using microwaved olive stone activated carbon, J. Environ. Chem. Eng. 3 (2013) 589–599. [CrossRef] [Google Scholar]
  47. Fiol N., Villaescusa I., Determination of sorbent point zero charge: usefulness in sorption studies, Environ. Chem. Lett. 7 (2009) 79–84. [CrossRef] [Google Scholar]
  48. Nadeem R., Hanif M.A., Shaheen F., Perveen S., Zafar M.N., Iqbal T., Physical and chemical modification of distillery sludge for Pb(II) biosorption, J. Hazard. Mater. 150 (2008) 335–342. [CrossRef] [PubMed] [Google Scholar]
  49. Fiol N., Villaescusa I., Martinez M., Miralles N., Poch J., Serarols J., Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol. 50 (2006) 132–140. [CrossRef] [Google Scholar]
  50. Taty-Costodes V.C., Fauduet H., Porte C., Delacroix A., Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater. B 105 (2003) 121–142. [CrossRef] [Google Scholar]
  51. Vaghetti J.C.P., Lima E.C., Royer B., da Cunha B.M., Cardoso N.F., Brasil J.L., Dias S.L.P., Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solution, J. Hazard. Mater. 162 (2009) 270–280. [CrossRef] [PubMed] [Google Scholar]
  52. Hameed B.H., Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, J. Hazard. Mater. 154 (2008) 204–212. [CrossRef] [PubMed] [Google Scholar]
  53. Lagergren S., About the theory of so called adsorption of solute substances. Kungliga Sevenska Vetenskapas akademiens Handlingar. 24 (1898) 1–39. [Google Scholar]
  54. Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 34 (1999) 451–465. [CrossRef] [Google Scholar]
  55. Michalak I., Chojnacka K., Witek-Krowiak A., State of the art for the biosorption process - a review, Appl. Biochem. Biotechnol. 170 (2013) 1389–1416. [CrossRef] [PubMed] [Google Scholar]
  56. Munagapati V.S., Yarramuthi V., Nadavala S.K., Alla S.R., Abburi K., Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics, Chem. Eng. J. 157 (2010) 357–365. [CrossRef] [Google Scholar]
  57. Sfaksi Z., Azzouz N., Abdelwahab A., Removal of Cr(VI) from water by cork waste. Arab J. Chem., Special Issue: Environmental Chemistry 7(2014) 37–42. [Google Scholar]
  58. Saha P., Chowdhury S., Insight into adsorption thermodynamics, in: Tadash M. (Ed.), Thermodynamics chap. 16, In Tech, 2011. [Google Scholar]
  59. Yuvaraja G., Krishnaiah N., Subbaiah M.V., Krishnaiah A., Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste, Colloid. Surface B 114 (2014) 75–81 [CrossRef] [Google Scholar]
  60. Petrović M.S., Šoštarić T.D., Pezo L.L., Stanković S.M., Lačnjevac Č.M., Milojković J.V., Stojanović M.D., Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials, CICEQ (2014). [Google Scholar]