Free Access
Issue |
Fruits
Volume 71, Number 4, July-August 2016
|
|
---|---|---|
Page(s) | 209 - 214 | |
DOI | https://doi.org/10.1051/fruits/2016010 | |
Published online | 20 June 2016 |
- Anonymous, The Pineapple, The State of Queensland (Department of Agriculture and Fisheries), 2009. [Google Scholar]
- Paull R.E., Chen C.-C., Postharvest physiology, handling and storage, in: Bartholomew D.P., Paull R.E., Rohrbach K.G. (Eds.), The Pineapple: Botany, production, and uses, CABI Publishing, Honolulu, 2003. [Google Scholar]
- D”Eeckenbrugge G.C., Leal F., Morphology, anatomy and taxonomy, in: Bartholomew D.P., Paull R.E., Rohrbach, K.G. (Eds.), The Pineapple: Botany, production, and uses, CABI Publishing, Honolulu, 2003. [Google Scholar]
- Bartholomew D.P., Malézieux E., Sanewski G.M., Sinclair, E., Inflorescence and fruit development and yield, in: Bartholomew D.P., Paull R.E., Rohrbach, K.G. (Eds.), The Pineapple: Botany, production, and uses, CABI Publishing, Honolulu, 2003. [Google Scholar]
- Zhang C., Tanabe K., Tamura F., Itai A., Yoshida, M., Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth, Plant Growth Regul. 52 (2007) 161–172. [CrossRef] [Google Scholar]
- Iqbal N., Nazar R., Khan M.I.R., Masood A., Khan N.A., Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions, Current Science 100 (2011) 998–1007. [Google Scholar]
- Zhang C., Tanabe K., Tamura F., Matsumoto K., Yoshida, A., 13C-photosynthate accumulation in Japanese pear fruit during the period of rapid fruit growth is limited by the sink strength of fruit rather than by the transport capacity of the pedicel, J. Exp. Bot. 56 (2005) 2713–2719. [CrossRef] [PubMed] [Google Scholar]
- Villalobos M., Alfaro K., Carvajal C., Castillo R., Kaiser R., Lopez A., Lopez J., Tolentino P., RyzUp®40SG delays fruit maturity and increase fruit weight in pineapple cv. MD-2 under Costa Rican growing conditions, in: Newsletter, Pineapple Working Group, Int. Soc. Agri. Sci. 20 (2014) 34–41. [Google Scholar]
- Li Y-H., Wu Y-H., Wu B., Zou M-H., Zhang Z., Sun., Exogenous gibberellic acid increases the fruit weight of ‘Comde de Paris’ pineapple by enlarging flesh cells without negative effect on fruit quality, Acta Physiol. Plant. 33 (2011) 1715–1722. [CrossRef] [Google Scholar]
- Taiz L., Zeiger E., Plant physiology, Third ed., Sinauer Associates, Inc., Sunderland, 2002. [Google Scholar]
- Greenboim-Wainberg Y., Maymon I., Borochov R., Alvarez J., Olszewski N., Ori N., Eshed Y., Weiss, D., Cross talk between gibberellin and cytokinin: The Arabidopsis GA response inhibitor spindly plays a positive role in cytokinin signaling, Plant Cell 17 (2005) 92–102. [CrossRef] [PubMed] [Google Scholar]
- Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M., KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities, Curr. Biol. 15 (2005) 1560–1565. [CrossRef] [PubMed] [Google Scholar]
- Zilkah S., David I., Yeselson Y., Tamir M., Winer L., Increasing “Hass” avocado fruit size by CPPU and GA application, in: Proceedings of The World Avocado Congress III, 1995. [Google Scholar]
- Bangerth F., Schriider M., Strong synergistic effects of gibberellins with the synthetic cytokinin N-(2-chloro-4-pyridyl)-N-phenylurea on partheno-carpic fruit set and some other fruit characteristics of apple, Plant Growth Regul. 15 (1994) 293–302. [CrossRef] [Google Scholar]
- Oestreicher J., Review on the potential of computer models to support soil conservation and erosion evasion initiatives for pineapple crops in the panama canal watershed, in: Newsletter, Pineapple Working Group, Int. Soc. Agri. Sci. 15 (2008) 12–21. [Google Scholar]
- Anonymous, Postharvest handling technical series: Pineapple, Ministry of Fisheries, Crops and Livestock, Georgetown, 2002. [Google Scholar]
- Matsuo S., Kikuchi K., Fukuda M., Honda I., Imanishi S., Roles and regulation of cytokinins in tomato fruit development, J. Exp. Bot. 63 (2012) 5569–5579. [CrossRef] [PubMed] [Google Scholar]
- Iqbal N., Nazar R., Khan M.I.R., Masood A., Khan N.A., Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions, Current Science 100 (2011) 998–1007. [Google Scholar]
- Brenner M.L., Cheikh N., The role of hormones in photosynthate partitioning and seed filling, in: Davies PJ. (Eds). Plant Hormones, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995. [Google Scholar]
- Ehne R., Roitsch T., Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins, Plant J. 11 (1997) 539–548. [CrossRef] [PubMed] [Google Scholar]
- Liu F-H., Longnecker N., Interactive effect of cytokinin and potassium on sink-source relationships in Lupinus angustifolius, Plant Growth Regul. 00 (2001) 1–6. [Google Scholar]
- Retamales J.B., Palma M.J., Morales Y.A., Lobos G.A., Moggia C.E., Mena C.A., Blueberry production in Chile: current status and future developments, The Revista Brasileira de Fruticultura 36 (2014) 58–67. [CrossRef] [Google Scholar]
- Obroucheva N.V., Hormonal Regulation during Plant Fruit Development, Russ. J. Dev. Biol. 45 (2014) 11–21. [CrossRef] [Google Scholar]
- Costa G., Bagni N., Effects of polyamines on fruit-set of apple, Hortic. Sci. 18 (1991) 59–61. [Google Scholar]
- Rastegar S., Rahemi M., Zargari H., Changes in endogenous hormones in fruit during growth and development of date palm fruits, Am.-Eur. J. Agri. Environ. Sci. 11 (2011) 140–148. [Google Scholar]
- Messiaen J., Cambier P., Cutsem V.P., Polyamines and pectins, Plant Physiol. 113 (1997) 387–395. [PubMed] [Google Scholar]
- Martínez-Romero D., Valero D., Serrano M., Burló F., Carbonell A., Burgos L., Riquelme F., Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) Storability improvement, J. Food Sci. 65 (2000) 288–294. [CrossRef] [Google Scholar]
- Munteanu V., Gordeev V., Martea R., Duca M., Effect of gibberellin cross talk with other phytohormones on cellular growth and mitosis to endoreduplication transition, Int. J. Adv. Res. Biol. Sci. 1 (2014) 136–153. [Google Scholar]
- Carpita N.C., Gibeaut D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth, Plant J. 3 (1993) 1–30. [CrossRef] [PubMed] [Google Scholar]
- Lee E.J., Matsumura Y., Soga K., Hoson T., Koizumi N., Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis, Plant Cell Physiol. 48 (2007) 405–413. [CrossRef] [PubMed] [Google Scholar]
- Richard M., How to grow big peaches, Dep. Hort. Virginia Tech. Blacksburg, 2006. [Google Scholar]
- Kassem H.A., Al-Obeed R.S., Ahmed M.A., Omar A.K.H., Productivity, fruit quality and profitability of jujube trees improvement by preharvest application of agro-chemicals, Middle-East J. Sci. Res. 9 (2011) 628–637. [Google Scholar]
- Lang A., Turgor-related translocation, Plant Cell Environ. 6 (1983) 683–689. [Google Scholar]
- Remy E., Cabrito T.R., Baster P., Batista R.A., Teixeira M.C., Friml J., Sa-Correia I., Duque P., A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis, Plant Cell 25 (2013) 901–926. [CrossRef] [PubMed] [Google Scholar]
- Kermasha S., Barthakur N.N., Alli I., Changes in chemical composition of the Kew cultivar of pineapple fruit during development, J. Sci. Food Agri. 39 (1987) 317–324. [CrossRef] [Google Scholar]
- Smirnoff N., The function and metabolism of ascorbic acid in plants, Ann. Bot. 78 (1996) 661–669. [CrossRef] [Google Scholar]
- Davey M.W., Montagu M.V., Inze D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Strain J.J., Favell D., Fletcher J., Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing, J. Sci. Food Agri. 80 (2000) 825–860. [CrossRef] [Google Scholar]
- Singleton V.L., Chemical and physical development of the pineapple fruit. I. Weight per fruitlet and other physical attributes, J. Food Sci. 30 (1965) 98–104. [CrossRef] [Google Scholar]
- Bartholomew D.P., Paull R.E., Pineapple, in: Monselise P. (Eds). CRC Handbook of Fruit Set and Development. Boca Raton, Florida: CRC Press, 1986. [Google Scholar]
- Kermasha S., Barthakur N.N., Alli I., Changes in chemical composition of the Kew cultivar of pineapple fruit during development, J. Sci. Food Agri. 39 (1987) 317–324. [CrossRef] [Google Scholar]
- Smith B.G., Harris P.J., Polysaccharide composition of unlignified cell walls of pineapple (Ananas comosus [L.] Merr.) fruit, Plant Physiol. 107 (1995) 1399–1409. [CrossRef] [PubMed] [Google Scholar]