Free Access
Volume 71, Number 5, September-October 2016
Page(s) 269 - 274
Published online 18 August 2016
  1. Boyer J., Liu R.H., Apple phytochemicals and their health benefits, Nutr. J. 3 (2004) 1–15. [CrossRef] [PubMed] [Google Scholar]
  2. Koning R.A., Grayson I., Weckbecker C., The effects of bilberries, blackcurrants and their constituent anthocyanins on heart in humans, Agro. Food Ind. Hi-tech 26 (2015) 16–20. [Google Scholar]
  3. Charepalli V., Reddivari L., Radhakrishnan S., Vadde R., Agarwal R., Vanamala J.K.P., Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells, J. Nutr. Biochem. 26 (2015) 1641–1649. [CrossRef] [PubMed] [Google Scholar]
  4. Shim S.H., Kim J.M., Choi C.Y.Kim C.Y., Park K.H., Ginkgo biloba and bilberry anthocyanins improve visual function in patients with normal tension glaucoma, J. Med. Food 15 (2012) 818–823. [CrossRef] [PubMed] [Google Scholar]
  5. Lancaster J.E., Regulation of skin color in apples, Crit. Rev. Plant Sci. 10 (192) 487–502. [Google Scholar]
  6. WinkeI-Shirley B., Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology, Plant Physiol. 126 (2001) 485–493. [CrossRef] [PubMed] [Google Scholar]
  7. Rabinovich A.T., Studies on apple peel color regulation, University of Minnesota, Minnesota, America, Dissertation, 2009, 55 p. [Google Scholar]
  8. Saure M.C., External control of anthocyanin formation in apple, Sci. Hortic. 42 (1990) 181–218. [CrossRef] [Google Scholar]
  9. Yamasaki H., Uefuji H., Sakihama Y., Bleaching of the red anthocyanin induced by superoxide radical, Arch. Biochem. Biophys. 332 (1996) 183–186. [CrossRef] [PubMed] [Google Scholar]
  10. Stanelonia R.J., Rodriguez-Betilera M.J., Casal J.J., Abscisic acid, high-light and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome mediated transcriptional regulation, Mol. Plant 1 (2008) 75–83. [CrossRef] [PubMed] [Google Scholar]
  11. Massa G.D., Kim H.H., Wheeler R.M., Mitchell C.A., Plant productivity in response to LED lighting, HortScience 43 (2008) 1951–1956. [Google Scholar]
  12. Samuoliene G., Sirtautas R., Brazaitytė A., Viršilė A., Duchovskis P., Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons, J. Food Agric. Env. 10 (2012) 701–706. [Google Scholar]
  13. Chang C.L., Chang K.P., The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting, Sci. Hortic. 179 (2014) 18–84. [CrossRef] [Google Scholar]
  14. Ma G., Zhang L., Kato M., Yamawaki K., Kiriiwa Y., Yahata M., Ikoma Y., Matsumoto H., Effect of the combination on ethylene and red LED light irradiation on carotenoid accumulation and carotenodenic gene expression in the flavedo of citrus fruit, Postharvest Biol. Technol. 99 (2015) 99–104. [CrossRef] [Google Scholar]
  15. Poudel P.R., Kataoka I., Mochoka R., Effect of red- and blue-light emitting diodes on growth and morphogenesis of grapes, Plant Cell Tissue Organ Cult. 92 (2008) 147–153. [CrossRef] [Google Scholar]
  16. Kondo S., Tomiyama H., Rodyoung A., Okawa K., Ohara H., Sugaya S., Terahara N., Hirai N., Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night, J. Plant Physiol. 171 (2014) 823–829. [CrossRef] [PubMed] [Google Scholar]
  17. Kobayashi S., Ishimaru M., Hiraoka K., Honda C., Myb-related genes of the Kyoho grapes (Vitis labruscana) regulate anthocyanin biosynthesis, Planta 215 (2002) 924–933. [CrossRef] [PubMed] [Google Scholar]
  18. Espley R.V., Hellens R.P., Putterill J., Stevenson D.E., Kutty-Amma S., Allan A.C., Red colouration in apple fruit due to the activity of the MYB transcription factor, MdMYB10, Plant J. 49 (2007) 414–427. [Google Scholar]
  19. Honda C., Besso H., Murai M., Iwanami H., Moriya S., Abe K., Wada M., Moriya-Tanaka Y., Hayama H., Tatsuki M, Effect of temperature on anthocyanin synthesis and ethylene production in the fruit on early- and medium-maturing apple cultivars during ripening stages, HortScience 49 (2014) 1510–1517. [Google Scholar]
  20. Wang B., He J., Duan C., Yu X., Zhu L., Xie Z., Zhang C., Xu W., Wang S., Root restriction affects anthocyanin accumulation and composition in berry skin of ‘Kyoho’ grape (Vitis vinifera L. × Vitis labrusca L.) during ripening, Sci. Hortic. 137 (2012) 20–28. [CrossRef] [Google Scholar]
  21. Sankat C.K, Maharaj R.P., Postharvest physiology and storage of tropical and subtropical fruits, in: Mitra S. (Eds.), Papaya, CAB International, Wallingford, UK, 1997. [Google Scholar]
  22. Wang L., Zhang X., Liu Y., Shi X., Wang Y., Zhang C., Zhao Z., The effect of fruit bagging on the color, phenolic compounds and expression of the anthocyanin biosynthetic and regulatory genes on the ‘Granny Smith’ apples, Eur. Food Res. Technol. 237 (2013) 875–885. [CrossRef] [Google Scholar]
  23. Yamane T., Jeong S.T., Goto-Yamamoto N., Koshita Y., Kobayashi S., Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 57 (2006) 54–59. [Google Scholar]
  24. Azuma A., Yakushiji H., Koshita Y., Kobayashi S., Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions, Planta 236 (2012) 1067–1080. [CrossRef] [PubMed] [Google Scholar]
  25. Takos A.M., Jaffé F.W., Jacob S.R., Robinson S.P., Walker A.R., Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples, Plant Physiol. 142 (2006) 1216–1232. [CrossRef] [PubMed] [Google Scholar]
  26. Ban Y., Honda C., Bessho H., Pang, X., Moriguchi T., Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase, J. Exp. Bot. 58 (2007) 1825–1834. [CrossRef] [PubMed] [Google Scholar]
  27. Feng F., Li M., Ma F., Cheng L., Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure, Plant Physiology and Biochemistry 69 (2013) 54–61. [CrossRef] [Google Scholar]
  28. Zoratti L., Karppinen K., Escobar A.L., Häggman H., Jaakola L., Light-controlled flavonoid biosynthesis in fruits, Front. Plant Sci. 5 (2014) 1–16. [CrossRef] [Google Scholar]
  29. Li Z., Gemma H., Iwahori S., Stimulation of ’Fuji’ apple skin color by ethephon and phosphorus-calcium mixed compounds in relation to flavonoid synthesis, Sci. Hortic. 94 (2002) 193–199. [CrossRef] [Google Scholar]
  30. Kamuro Y., Tohyama T., Okabe K., New functional photo-selective sheets. Regul. Plant Growth Dev. 38 (2003) 132–138. [Google Scholar]
  31. Shoji K., Goto E., Hashida S., Goto F., Yoshihara T., Effect of red light and blue light on the anthocyanin accumulation and expression of anthocyanin biosynthesis genes in red-leaf lettuce, J. Sci. High Technol. Agric. 22 (2010) 107–113. [CrossRef] [Google Scholar]
  32. Xu F., Cao S., Shi L., Chen W., Su X., Yang Z., Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit, J. Agric. Food Chem. 62 (2014) 4778–4783. [CrossRef] [PubMed] [Google Scholar]
  33. Nito K., Wong C.C., Yates J.R. and Chory, J., Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors, Cell Rep. 3 (2013) 1970–1979. [CrossRef] [PubMed] [Google Scholar]
  34. Zheng Y., Tian L., Liu H., Pan Q., Zhan J., Huang W., Sugar induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries, Plant Growth Regul. 58 (2009) 251–260. [CrossRef] [Google Scholar]
  35. Proctor J.T.A., Color stimulation in attached apples with supplementary light, Can. J. Plant Sci. 54 (1974) 499–503. [CrossRef] [Google Scholar]
  36. Khomdram S.D., Singh P.K., Polyphenolic compounds and free radical scavenging activity in eight Lamiaceae herbs of Manipur, Notulae Scientia Biologicae 3 (2011) 108–113. [CrossRef] [Google Scholar]
  37. Kondo S., Hiraoka K., Kobayashi S., Honda C., Terahara N., Changes in the expression of anthocyanin biosynthesis genes during apple development, J. Am. Soc. Hortic. Sci. 127 (2002) 971–976. [Google Scholar]
  38. Wu M.C., Hou C.Y., Jiang C.M., Wang Y.T., Wang C.Y., Chen H.H., Chang H.M., A novel approach of LED light radiation improves the antioxidant activity of pea seedlings, Food Chem. 101 (2007) 1753–1758. [CrossRef] [Google Scholar]
  39. Li Q., Kubota C., Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce, Env. Exp. Bot. 67 (2009) 59–64. [CrossRef] [Google Scholar]