Free Access
Volume 71, Number 6, November-December 2016
Page(s) 433 - 445
Published online 25 November 2016
  1. Zhu J.K., Plant salt tolerance, Trends Plant Sci. 6 (2001) 66–71. [CrossRef] [PubMed] [Google Scholar]
  2. Shilpim M., Narendra T., Cold, salinity and drought stresses: an overview, Arch. Biochem. Biophys. 444 (2005) 139–158. [CrossRef] [PubMed] [Google Scholar]
  3. Habibi Gh., Norouzi F., Hajiboland R., Silicon alleviates salt stress in pistachio plants, Prog. Biol. Sci. 4 (2014) 189–202. [Google Scholar]
  4. Khan M.I.R., Iqbal N., Masood A., Khan N.A., Variation in salt tolerance of wheat cultivars: role of glycine betaine and ethylene Pedosphere 22 (2012) 746–754. [Google Scholar]
  5. Jackson M., Hormones from roots as signal for the stems of stressed plants, Trends Plant Sci. 2 (1997) 22–28. [CrossRef] [Google Scholar]
  6. Shahriaripour R., Tajabadi pour A., Mozaffari V., Dashti H., Adhami E., Effects of salinity and soil zinc application on growth and chemical composition of pistachio seedlings, J. Plant Nutr. 33(8) (2010) 1166–1179. [CrossRef] [Google Scholar]
  7. Razavi nasab A., Tajabadi pour A., Shirani H., Effect of salinity and nitrogen application on growth, chemical composition and some biochemical indices of pistachio seedlings (Pistacia vera L.), J. Plant Nutr. 37(10) (2014) 1612–1626. [CrossRef] [Google Scholar]
  8. Sepaskhah A.R., Maftoun M., Growth and chemical composition of pistachio seedlings as influenced by irrigation regimes and salinity levels of irrigation water: I. Growth. J. Am. Soc. Hort. Sci. 57 (1981) 469–476. [Google Scholar]
  9. Grattan S.R., Grieve C.M., Salinity–mineral nutrient relations in horticultural crops, Sci. Hort. 78 (1999) 127–157. [Google Scholar]
  10. Behboudian M.H., Walker R.R., Torokfaivy E., Effect of water stress and salinity on photosynthesis of pistachio, Sci. Hort. 29 (1986) 251–261. [CrossRef] [Google Scholar]
  11. Picchioni G.A., Miyamota S., Salt effects on growth and ion uptake of pistachio rootstock seedlings, J. Am. Soc. Hort. Sci. 115 (1990) 647–653. [Google Scholar]
  12. Ferguson L., Poss J.A., Grattan S.R., Grieve C.M., Wang D., Wilson C., Donovan Chao C.T., Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress, J. Am. Soc. Hort. Sci. 127 (2002) 194–199. [Google Scholar]
  13. Ranjbar A., Damme P.van., Samson R., Lemeur R., Leaf water status and photosynthetic gas exchange of Pistacia khinjuk and P. mutica exposed to osmotic drought stress, Acta Hort. 591 (2002) 423–428. [CrossRef] [Google Scholar]
  14. Aravind P., Prasad M.N.V., Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a fresh water macrophyte, Plant Sci. 166 (2004) 1321–1327. [CrossRef] [Google Scholar]
  15. Welch R.M., The impact of mineral nutrient in food crops on global human health, Plant Soil 247 (2002) 83–90. [CrossRef] [Google Scholar]
  16. Cakmak I., Possible roles of zinc in protecting plant cells from damage by reactive oxygen species, New Phytol. 146 (2000) 185–205. [CrossRef] [Google Scholar]
  17. Cakmak I., Marschner H., Bangerth F,. Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.), J. Exp. Bot. 40 (1989) 405–412. [CrossRef] [Google Scholar]
  18. Marschner H., Cakmak I., High light intensity enhances chlorosis and necrosis in leaves of zinc potassium, and magnesium deficient bean (Phaseolus vulgaris L.) plant, J. Plant Physiol. 134 (1989) 308–315. [CrossRef] [Google Scholar]
  19. Welch R.M., Webb M.J., Lonegaran J.E., Zinc in membrane function and its role in phosphorus toxicity. in: Scaife A. (Ed.), Proceedings of the 9th International Plant Nutrition. Coll. (ed. A. Scaife), Commonw. Agric. Bur., Farnham Royal. Bucks, UK, 1982 pp. 710–715. [Google Scholar]
  20. Alpaslan M, Inal A., Gunes A., Cikili Y., Oscan H., Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato [(Lycopersicum esculentum L.) Mill. Cv. Late] grown under salinity, Turk. J. Bot 23 (1999) 1–6. [Google Scholar]
  21. Eskandari E., Mozaffari V., Tajabadi Pour A., Effect of salinity and copper on growth and chemical composition of pistachio seedlings, J. Plant Nut. 37 (2014) 1063–1079. [CrossRef] [Google Scholar]
  22. Tandon H.L.S., Methods of Analysis of Soils, Plants, Waters and Fertilizers, Fertilizer Development and Consultation Organisation, New Delhi, India, 1998. [Google Scholar]
  23. Hunt R., Plant growth curves. An introduction to the functional approach to plant growth analysis, Edward Arnold, London, 1982. [Google Scholar]
  24. Romero J.M., Maran T., Murillo J.M., Long-term responses of Melilotus segetalis to salinity. II. Nutrient absorption and utilization, Plant Cell Environ. 17 (1994) 1249–1255. [CrossRef] [Google Scholar]
  25. Novakova M., Motyka V., Dobrev P.I., Malbeck J., Gaudinova A., Vankova R., Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves, J. Exp. Bot. 56 (2005) 287–2883 [CrossRef] [PubMed] [Google Scholar]
  26. Dobrev P.I., Havlicek L., Vagner M., Malbeck J., Kaminek M., Puriflcation and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography, J. Chromato. 1075 (2005) 159–166. [CrossRef] [Google Scholar]
  27. Lexa M., Genkov T., Malbeck J., Machackova I., Brzohohaty B., 2003. Dynamics of endogenous cytokinins pool in tobacco seedlings: a modelling approach, Ann. Bot. 91 (2003) 585–597. [CrossRef] [PubMed] [Google Scholar]
  28. Bates L.S., Waldeen R.P., Teare I.D., Rapid Determination of Free Proline for Water-stressed Studies, Plant Soil 39 (1973) 205–207. [CrossRef] [Google Scholar]
  29. Grieve C.M., Grattan S.R., Rapid assay for the determination of water soluble quaternary ammonium compounds, Plant Soil 70 (1983) 303–307. [CrossRef] [Google Scholar]
  30. Uriu K., Pearson J., Diagnosis and correction of nutritional problems. Calif, Pistachio Ind. Ann. Rep. 1981. [Google Scholar]
  31. Uriu K., Pearson J., Diagnosis and correction of nutritional problems, including the crinkle leaf disorder, Calif. Pistachio Ind. Ann. Rep. 1983. [Google Scholar]
  32. Gunes A., Inal A., Alpaslan M., Effect of salinity on stomatal resistance, proline and mineral composition of pepper, J. Plant Nutr. 19 (1996) 389–396. [CrossRef] [Google Scholar]
  33. Jamalomidi M., Esfahani M., Carapetian J., Zinc and salinity interaction on agronomical traits, chlorophyll and proline content in lowland rice (Oryza sativa L.) genotypes, Pak. J. Biol. Sci. 9 (2006) 1315–1319. [CrossRef] [Google Scholar]
  34. Khoshgoftarmanesh A.H., Shariatmadari H., Karimian N., Khajehpour M.R., Responses of wheat genotypes to zinc fertilization under saline soil conditions, J. Plant Nutr. 29 (2006) 1543–1556. [CrossRef] [Google Scholar]
  35. Genc Y., McDonald G.K., Graham R.D., The interactive effects of zinc and salt on growth of wheat. in: Li C.J. (Ed.), Plant Nutrition for Food Security, Human Health and Environmental Protection, Tsinghua University Press, Beijing, China, 2005. [Google Scholar]
  36. Pardia A.K., Das A.B., Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Saf. 60 (2005) 324–349. [Google Scholar]
  37. Ruiz D., Martinez V., Cerda A., Citrus response to salinity: growth and nutrient uptake, Tree Physiol. 17 (1997) 14–150. [CrossRef] [Google Scholar]
  38. Mohammadi P., Khoshgoftarmanesh A.H., The effectiveness of synthetic zinc(Zn)-amino chelates in supplying Zn and alleviating salt-induced damages on hydroponically grown lettuce, Sci. Hort. 172 (2014) 117–123. [CrossRef] [Google Scholar]
  39. Aktas H., Abak K., Cakmak I., Genotypic variation in the response of pepper to salinity, Sci. Hort. 110 (2006) 260–266. [Google Scholar]
  40. Norvell W.A., Welch R.M., Growth and nutrient uptake by barley (Hordeum vulgare L. cv. Herta): studies using an N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid-buffered nutrient solution technique. I. Zinc ion requirements, Plant Physiol. 101 (1993) 619–625. [CrossRef] [PubMed] [Google Scholar]
  41. Davey Z.E., Van Staden J., Cytokinin activity in Lupinus albus. I. Distribution in vegetative and flowering plants. Physiol, Plant. 43 (1978) 77–81. [Google Scholar]
  42. Zeevaart J.A.D., Boyer G.L., Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium Plant Physiol. 74 (1984) 934–939. [Google Scholar]
  43. Cakmak I., Morphologische und physiologische Veranderungen bei Zink mangelpflanzen, University Hohenheim, Ph.D. thesis, 1988. [Google Scholar]
  44. Dunlop J.R., Robacker K.K., Nutrient salts promote lightinduced degradation of indole-3-acetic acid in tissue culture media, Plant Physiol. 88 (1988) 379–382. [CrossRef] [PubMed] [Google Scholar]
  45. Schneider E.A., Wightman F., 1974. Metabolism of auxin in higher plants, Ann. Rev. Plant Physiol. 25 (1974) 487–513. [CrossRef] [Google Scholar]
  46. Gazaryan I.G., Lagrimini L.M., Ashby G.A., Thorneley N.F., Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases, Biochem. J. 313 (1996) 841–847 [CrossRef] [PubMed] [Google Scholar]
  47. Metodiewa D, De Melo, M.P.,Escobar J.A., Cilento G., Dunford H.B., Horseradish peroxidase-catalysed aerobic oxidation and peroxidation of indole-3-acetic acid. I. Optical spectra, Arch. Biochem. Biophys. 296 (1992) 27–33. [CrossRef] [PubMed] [Google Scholar]
  48. Tavallali V., Rahemi M., Eshghi S., Kholdebarin B., Ramezanian A., Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk. J. Agri. For. 34 (2010) 349–359. [Google Scholar]
  49. Gilbert A.G., Gadush M.V., Wilson C., Madore M.A., Amino acid accumulation in sink and source tissues of Coleus blumei Benth, during salinity stress. J. Exp. Bot. 49 (1998) 107–114. [CrossRef] [Google Scholar]
  50. Saleh J., Maftoon M., 2008. Interactive effects of NaCl levels and zinc sources and levels on the growth and mineral composition of rice, J. Agric. Sci. Technol. 10 (2008) 325–336. [Google Scholar]
  51. Hendawy S.F., Khalid Kh.A., Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels, J. Appl. Sci. Res. 1 (2005) 14–155. [Google Scholar]
  52. Luttus S., Majerus V., Konet J.M., NaCl effects on proline metabolism in rice, Physiol. Plant. 105 (1999) 450–458. [CrossRef] [Google Scholar]
  53. Palfi G., Effects of kinetin, 2-4-D and antimetabolites on the changes in amino acid content of withering leaves, Planta 78 (1968) 196–199. [CrossRef] [Google Scholar]
  54. Sulpice R., Tsukaya H., Nonaka H., Mustardy L., Chen T.H.H., Murata N., Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine, Plant J. 36 (2003) 165–176. [CrossRef] [PubMed] [Google Scholar]
  55. Rhodes D., Hanson A.D., Quaternary ammonium and tertiary sulfonium compounds in higher plants, Ann. Rev. Plant Physiol. Plant Molec. Biol 44 (1993) 357–384. [CrossRef] [Google Scholar]
  56. McCue R.F., Hanson A.D., Drought and salt tolerance: toward understanding and application, Tibtech. 8 (1990) 35–362. [CrossRef] [Google Scholar]
  57. Mansour M.M.F., Nitrogen containing compounds and adaptation of plants to salinity stress, Biol. Plant. 43 (2000) 491–500. [Google Scholar]
  58. Mansour M.M.F., Stadelmann E.J., Lee-Stadelmann O.Y., Salt acclimation of Triticum by choline chloride: plant growth, mineral content and cell permeability, Plant Physiol. Biochem. 31 (1993) 34–348. [Google Scholar]
  59. Genard H., Le Saos J., Hillard J., Tremolieres A., Boucaud J., Effect of salinity on lipid composition, glycinebetaine content and photosynthesis activity in chloroplasts of Suaeda maritime, Plant Physiol. 29 (1991) 421–427. [Google Scholar]
  60. Maleka P., Kontturi M., Pehu B., Somersalo S., Photosynthesis response of drought and salt-stressed tomato and turnip plants to foliar-applied glycinebetaine, Physiol. Plant. 105 (1999) 4–50. [Google Scholar]