Free Access
Volume 66, Number 3, May-June 2011
Page(s) 203 - 215
Published online 01 June 2011
  1. Sarni-Manchado P., Cheynier V., Les polyphénols en agroalimentaire, Lavoisier, Paris, France, 2006. [Google Scholar]
  2. Yoshitama K., Abe K., Chromatographic and spectral characterization of 3’-glycosylation in anthocyanidins, Phytochemistry 16 (1977) 591–593. [CrossRef] [Google Scholar]
  3. Giusti M.M., Wrolstad R.E., Acylated anthocynins from edible sources and their application in food systems, Biochem. Eng. J. 14 (2003) 217–225. [CrossRef] [Google Scholar]
  4. Markovic J.M.D., Petranovic N.A., A spectrophotometric study of the copigmentation of malvin with caffeic and ferulic acids, J. Agric. Food Chem. 48 (2000) 5530–5536. [CrossRef] [PubMed] [Google Scholar]
  5. Rubinskiene M., Viskelis P., Jasutiene I., Impact of various factors on the composition and stability of black currant anthocyanins, Food Res. Int. 38 (2005) 867–871. [CrossRef] [Google Scholar]
  6. Rein M., Copigmentation reactions and color stability of berry anthocyanins, Univ. Helsinki, Acad. Diss., Helsinki, Finland, 2005, 87 p. [Google Scholar]
  7. Mazza G., Brouillard R., The mechanism of co-pigmentation of anthocyanins in aqueous solutions, Phytochemistry 29 (1990) 1097–1102. [CrossRef] [Google Scholar]
  8. Espín J.C., Soler-Rivas C., Wichers H.J., Anthocyanin-based natural colorants: a new source of antiradical activity for foodstuff, J. Agric. Food Chem. 48 (2000) 1588–1592. [CrossRef] [PubMed] [Google Scholar]
  9. Dyrby M., Westergaard N., Stapelfeldt H., Light and heat sensitivity of red cabbage extract in soft drink model systems, Food Chem. 72 (2001) 431–437. [CrossRef] [Google Scholar]
  10. Kirca A., Cemeroglu B., Degradation kinetics of anthocyanins in blood orange juice and concentrate, Food Chem. 81 (2003) 583–587. [CrossRef] [Google Scholar]
  11. Kirca A., Ozkan M., Cemeroglu B., Stability of black carrot anthocyanins in various fruit juices and nectars, Food Chem. 97 (2006) 598–605. [CrossRef] [Google Scholar]
  12. Kirca A., Ozkan M., Cemeroglu B., Effects of temperature, solid content and pH on the stability of black carrot anthocyanins, Food Chem. 101 (2007) 212–218. [CrossRef] [Google Scholar]
  13. Garzon G.A., Wrolstad R.E., Comparison of the stability of perlargonidin-based anthocyanins in strawberry juice and concentrate, J. Food Sci. 67 (2002) 1288–1299. [CrossRef] [Google Scholar]
  14. Wang W.-D., Xu S.-Y., Degradation kinetics of anthocyanins in blackberry juice and concentrate, J. Food Eng. 82 (2007) 271–275. [CrossRef] [Google Scholar]
  15. De Rosso V.V., Mercadante A.Z., Evaluation of colour and stability of anthocyanins from tropical fruits in an isotonic soft drink system, Innov. Food Sci. Emerg. Technol. 8 (2007) 347–352. [Google Scholar]
  16. Eiro M.J., Heinonen M., Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation, J. Agric. Food Chem. 50 (2002) 7461–7466. [CrossRef] [PubMed] [Google Scholar]
  17. De Rosso V.V., Mercadante A.Z., The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola, Food Chem. 103 (2007) 935–943. [CrossRef] [Google Scholar]
  18. Duangmal K., Saicheua B., Sueeprasan S., Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink, LWT - Food Sci. Technol. 41 (2008) 1437–1445. [Google Scholar]
  19. Chandra A., Nair M.G., Iezzoni A.F., Isolation and stabilization of anthocyanins from tart cherries (Prunus cerasus L.), J. Agric. Food Chem. 41 (1993) 1062–1065. [CrossRef] [Google Scholar]
  20. Malien-Aubert C., Dangles O., Amiot M.J., Color stability of commercial anthocyanin-based extract in relation to the phenolic composition, Protective effects by intra-and intermolecular copigmentation, J. Agric. Food Chem. 49 (2001) 170–176. [Google Scholar]
  21. Rein M.J., Heinonen M., Stability and enhancement of berry juice color, J. Agric. Food Chem. 52 (2004) 3106–3114. [CrossRef] [PubMed] [Google Scholar]
  22. Zozio S., Extraction d’anthocyanes de mûres andines (Rubus Adenotrichus Schlech et Rubus Glaucus Benth) et d’Açaï (Euterpe oleracea Mart.) sur résines adsorbantes et étude de la stabilité de ces extraits d’anthocyanes purifiés, ENSIA-SIARC, Master, Montpellier, France, 2008. [Google Scholar]
  23. Mertz C., Cheynier V., Günata Z., Brat P., Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by High-Performance Liquid Chromatography with diode array detection and electrospray Ion trap mass spectrometry, J. Agric. Food Chem. 55 (2007) 8616–8624. [CrossRef] [PubMed] [Google Scholar]
  24. George S., Brat P., Alter P., Rapid determination of polyphenols and vitamin C in plant-derived products, J. Agric. Food Chem. 53 (2005) 1370–1373. [CrossRef] [PubMed] [Google Scholar]
  25. Lee J., Determination of total monomeric anthocyanin pigment content of fruit juices, beverages natural colorants, and wines by the pH differential method: collaborative study, J. AOAC Int. 88 (2005) 1269–1278. [PubMed] [Google Scholar]
  26. Meret M., Étude des composés libres et liés de deux fruits tropicaux : la tomate d’arbre (Cyphomandra betaceae) et la mûre andine (Rubus glaucus), Univ. Montpellier 2, Master, Montpellier, France, 2007. [Google Scholar]
  27. Cisse M., Vaillant F., Acosta O., Dhuique-Mayer C., Dornier M., Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, Eyring, and Ball models, J. Agric. Food Chem 57 (2009) 6285– 6291. [Google Scholar]
  28. Sadilova E., Stintzing F.C., Kammerer D.R., Carle R., Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment, Food Res. Int. 42 (2009) 1023–1033. [CrossRef] [Google Scholar]
  29. Turker N., Aksay S., Ekiz H.I., Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (Daucus carota var. L.) beverage: Shalgam, J. Agric. Food Chem. 52 (2004) 3807–3813. [Google Scholar]
  30. Liu X., Xiao G., Chen W., Xu Y., Wu J., Quantification and purification of mulberry anthocyanins with macroporous resins, J. Biomed. Biotechnol. 5 (2004) 326–331. [CrossRef] [PubMed] [Google Scholar]
  31. Kammerer D.R., Kljusuric J.G., Recovery of anthocyanins from grape pomace extract (Vitis vinifera L. cv. Cabernet Mitos) using a polymeric adsorber resin, Eur. Food Res. Technol. 220 (2005) 431–437. [CrossRef] [Google Scholar]
  32. Pacheco-Palencia L.A., Hawken P., Talcott S.T., Phytochemical, antioxidant and pigment stability of açai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage, Food Res. Int. 40 (2007) 620–628. [CrossRef] [Google Scholar]
  33. Sadilova E., Stintzing F.C., Thermal degradation of acylated and nonacylated anthocyanins, J. Food Sci. 71 (2006) 504–512. [CrossRef] [Google Scholar]
  34. Cevallos-Casals B.A., Cisneros-Zevallos L., Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants, Food Chem. 86 (2004) 69–77. [CrossRef] [Google Scholar]
  35. Shi Z., Lin M., Francis F.J., Stability of anthocyanins from Tradescania pallida, J. Food. Sci. 57 (1992) 758–760. [Google Scholar]
  36. Baublis A., Spomer A., Berber-Jimenez M.D., Anthocyanins pigments: Comparison of extract stability, J. Food. Sci. 59 (1994) 1219–1221. [CrossRef] [Google Scholar]
  37. Inamu O., Tamaru I., Stability of anthocyanins of Sambucus canadensis and Sambucus nigra, J. Agric. Food Chem. 44 (1996) 3090–3096. [CrossRef] [Google Scholar]
  38. Di Mauro A., Arena E., Fallico B., Recovery of anthocyanins from pulp wash of pigmented oranges by concentration on resins, J. Agric. Food Chem. 50 (2002) 5968–5974. [CrossRef] [PubMed] [Google Scholar]
  39. Scordino M., Di Mauro A., Passerini A., Adsorption of flavonoids on resins: Hesperidin, J. Agric. Food Chem. 51 (2003) 6998–7004. [CrossRef] [PubMed] [Google Scholar]
  40. Schauss A.G., WU X., Prior R.L., Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (Açai), J. Agric. Food Chem. 54 (2006) 8598–8603. [CrossRef] [PubMed] [Google Scholar]
  41. Pacheco-Palencia L.A., Duncan C.E., Talcott S.T., Phytochemical composition and thermal stability of two commercial açai species, Euterpe oleracea and Euterpe precatoria, Food Chem. 115 (2009) 1199–1205. [CrossRef] [Google Scholar]
  42. Pacheco-Palencia L.A., Talcott S.T., Chemical stability of açai fruit (Euterpe oleracea Mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems, Food Chem. 118 (2009) 17–25. [CrossRef] [Google Scholar]
  43. Pozo-Insfran D.D., Brenes C.H., Talcott S.T., Phytochemical composition and pigment stability of açai (Euterpe oleracea Mart.), J. Agric. Food Chem. 52 (2004) 1539–1545. [CrossRef] [PubMed] [Google Scholar]
  44. Poei-Langston M.S., Wrolstad R.E., Color degradation in an ascorbic acid-anthocyanin-flavanol model system, J. Food Sci. 46 (1981) 1218–1222. [CrossRef] [Google Scholar]
  45. Garcia-Viguera C., Bridle P., Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid, J. Agric. Food Chem. 64 (1999) 21–26. [Google Scholar]
  46. Iversen C.K., Black currant nectar: Effect of processing and storage on anthocyanin and ascorbic acid content, J. Food Sci. 64 (1999) 37–41. [CrossRef] [Google Scholar]
  47. Shrikhande A.J., Francis F.J., Effect of flavonols on ascorbic acid and anthocyanin stability in model systems, J. Food Sci. 39 (1974) 904–906. [CrossRef] [Google Scholar]
  48. Francis F.J., Food colorant: Anthocyanins, Crit. Rev. Food. Sci. Nutr. 28 (1989) 273–312. [Google Scholar]
  49. Wrolstad R.E., Detection of adulteration in blackberry juice concentrates and wines, J. Assoc. Off. Anal. Chem. 65 (1982) 1417–1423. [PubMed] [Google Scholar]