Free Access
Review
Issue
Fruits
Volume 66, Number 6, November-December 2011
Page(s) 417 - 440
DOI https://doi.org/10.1051/fruits/2011058
Published online 03 November 2011
  1. Lewinsohn E., Sitrit Y., Bar E., Azulay Y., Ibdah M., Meir A., Yosef E., Zamir D., Tadmor Y., Not just colors-carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit, Trends Food Sci. Technol. 16 (2005) 407–415. [CrossRef] [Google Scholar]
  2. Pallett K.E., Young A.J., Carotenoids, in: Alscher, R.G., Hess, J.L. (Eds.), Antioxidants in higher plants, CRC Press, Boca Raton, FL, U.S.A., 1993, 91–110. [Google Scholar]
  3. Gaziano J.M., Johnson E.J., Russell R.M., Manson J.E., Stampfer M.J., Ridker P.M., Frei B., Hennekens C.H., Krinsky N.I., Discrimination in absorption or transport of β-carotene isomers after oral supplementation with either all-trans- or 9-cisβ-carotene, Am. J. Clin. Nutr. 61 (2009) 1248–1252. [Google Scholar]
  4. Rodriguez-Amaya D.B., A guide to carotenoid analysis in foods, OMNI Research, Washington, D.C., U.S.A., 2001, 71 p. [Google Scholar]
  5. Dutta D., Dutta A., Raychaudhuri U., Chakraborty R., Rheological characteristics and thermal degradation kinetics of β-carotene in pumpkin puree, J. Food Eng. 76 (2006) 538–546. [CrossRef] [Google Scholar]
  6. Mortensen A., Analysis of a complex mixture of carotenes from oil palm (Elaeis guineensis) fruit extract, Food Res. Int. 38 (2005) 847–853. [CrossRef] [Google Scholar]
  7. Rios J.J., Fernández-García E., Mínguez-Mosquera M.I., Pérez-Gálvez A., Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins, Food Chem. 106 (2008) 1145–1153. [CrossRef] [Google Scholar]
  8. Britton G., Liaaen-Jensen S., Pfander H., Carotenoids, Vol. 1B: Spectroscopy, Birkhäuser-Verlag, Basel, Switzerland, 1995. [Google Scholar]
  9. Mohamed N., Hashim R., Rahman N.A., Zain S.M., An insight to the cleavage of β-carotene to vitamin A: a molecular mechanics study, J. Mol. Struct. 538 (2001) 245–252. [CrossRef] [Google Scholar]
  10. Borel P., Drai J., Faure H., Fayol V., Galabert C., Laromiguiere M., Le Moel G., Recent knowledge about intestinal absorption and cleavage of carotenoids, Ann. Biol. Clin. 63 (2005) 165–177. [Google Scholar]
  11. Laguerre M., Lecomte J., Villeneuve P., Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges, Progr. Lipid Res. 46 (2007) 244–282. [CrossRef] [PubMed] [Google Scholar]
  12. Perez-Galvez A., Minguez-Mosquera M.I., Structure-reactivity relationship in the oxidation of carotenoid pigments of the pepper (Capsicum annuum L.), J. Agric. Food Chem. 49 (2001) 4864–4869. [CrossRef] [PubMed] [Google Scholar]
  13. Ozhogina O.A., Kasaikina O.T., β-Carotene as an interceptor of free radicals, Free Radic. Biol. Med. 19 (1995) 575–581. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Warner K., Frankel E.N., Effects of β-carotene on light stability of soybean oil, J. Am. Oil Chem. Soc. 64 (1987) 213–218. [CrossRef] [Google Scholar]
  15. Bureau S., Renard C.M.G.C., Reich M., Ginies C., Audergon J.-M., Change in anthocyanin concentrations in red apricot fruits during ripening, LWT - Food Sci. Technol. 42 (2009) 372–377. [CrossRef] [Google Scholar]
  16. Liu L.H., Zabaras D., Bennett L.E., Aguas P., Woonton B.W., Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage, Food Chem. 115 (2009) 495–500. [CrossRef] [Google Scholar]
  17. Bechoff A., Dhuique-Mayer C., Dornier M., Tomlins K.I., Boulanger R., Dufour D., Westby A., Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips, Food Chem. 121 (2010) 348–357. [CrossRef] [Google Scholar]
  18. Hiranvarachat B., Suvarnakuta P., Devahastin S., Isomerisation kinetics and antioxidant activities of β-carotene in carrots undergoing different drying techniques and conditions, Food Chem. 107 (2008) 1538–1546. [CrossRef] [Google Scholar]
  19. Rodriguez E.B., Rodriguez-Amaya D.B., Formation of apocarotenals and epoxycarotenoids from β-carotene by chemical reactions and by autoxidation in model systems and processed foods, Food Chem. 101 (2007) 563–572. [CrossRef] [Google Scholar]
  20. Thurnham D.I., Bioequivalence of β-carotene and retinol, J. Sci. Food Agric. 87 (2007) 13–19. [CrossRef] [Google Scholar]
  21. Zhang P., Omaye S.T., β-Carotene: interactions with α-tocopherol and ascorbic acid in microsomal lipid peroxidation, J. Nutr. Biochem. 12 (2001) 38–45. [CrossRef] [PubMed] [Google Scholar]
  22. Mordi R.C., Mechanism of β-carotene degradation, Biochem. J. 292 (1993) 310–312. [PubMed] [Google Scholar]
  23. Stahl W., Sies H., Carotenoids and protection against solar UV radiation, Skin Pharmacol. Appl. Physiol. 15 (2002) 291–296. [CrossRef] [Google Scholar]
  24. Sander L.C., Sharpless K.E., Craft N.E., Wise S.A., Development of engineered stationary phases for the separation of carotenoid isomers, Anal. Chem. (1994) 1667–1674. [Google Scholar]
  25. Britton G., Liaanen-Jensen S., Pfander H., Carotenoids handbook, Birkhaüser Verlag Basel, Switz., 2004. [Google Scholar]
  26. Marx M., Stuparic M., Schieber A., Carle R., Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juices and carotene-containing preparations, Food Chem. 83 (2003) 609–617. [CrossRef] [Google Scholar]
  27. Chen B.H., Huang J.H., Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments, Food Chem. 62 (1998) 299–307. [CrossRef] [Google Scholar]
  28. Henry L.K., Catignani G., Schwartz S., Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans-β-carotene, J. Am. Oil Chem. Soc. 75 (1998) 823–829. [CrossRef] [Google Scholar]
  29. Vásquez-Caicedo A.L., Schilling S., Carle R., Neidhart S., Effects of thermal processing and fruit matrix on β-carotene stability and enzyme inactivation during transformation of mangoes into puree and nectar, Food Chem. 102 (2007) 1172–1186. [CrossRef] [Google Scholar]
  30. Schieber A., Marx M., Carle R., Simultaneous determination of carotenes and tocopherols in ATBC drinks by high-performance liquid chromatography, Food Chem. 76 (2002) 357–362. [CrossRef] [Google Scholar]
  31. Kidmose U., Yang R.Y., Thilsted S.H., Christensen L.P., Brandt K., Content of carotenoids in commonly consumed Asian vegetables and stability and extractability during frying, J. Food Compos. Anal. 19 (2006) 562–571. [CrossRef] [Google Scholar]
  32. Koca N., Burdurlu H.S., Karadeniz F., Kinetics of colour changes in dehydrated carrots, J. Food Eng. 78 (2007) 449–455. [CrossRef] [Google Scholar]
  33. Dhuique-Mayer C., Tbatou M., Carail M., Caris-Veyrat C., Dornier M., Amiot M.J., Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds, J. Agric. Food Chem. 55 (2007) 4209–4216. [CrossRef] [PubMed] [Google Scholar]
  34. Caris-Veyrat C., Amiot M.J., Ramasseul R., Marchon J.C., Mild oxidative cleavage of β-carotene by dioxygen induced by a ruthenium porphyrin catalyst: characterization of products and of some possible intermediates, New J. Chem. 25 (2001) 203–206. [CrossRef] [Google Scholar]
  35. Nonier M.F., De Gaulejac N.V., Vivas N., Vitry C., Characterization of carotenoids and their degradation products in oak wood. Incidence on the flavour of wood, C. R. Chim. 7 (2004) 689–698. [CrossRef] [Google Scholar]
  36. Sommerburg O., Langhans C.D., Arnhold J., Leichsenring M., Salerno C., Crifo C., Hoffmann G.F., Debatin K.M., Siems W.G., β-Carotene cleavage products after oxidation mediated by hypochlorous acid – A model for neutrophil-derived degradation, Free Radic. Biol. Med. 35 (2003) 1480–1490. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Bosser A., Belin J.M., Synthesis of β-Ionone in an aldehyde/xanthine oxidase/β-carotene system involving free-radical formation, Biotechnol. Progress. 10 (1994) 129–133. [CrossRef] [Google Scholar]
  38. Bosser A., Paplorey E., Belin J.M., A simple way to (+/-)-dihydroactinidiolide from β-ionone related to the enzymatic cooxidation of β-carotene in aqueous-solution, Biotechnol. Prog. 11 (1995) 689–692. [CrossRef] [Google Scholar]
  39. Wache Y., Bosser-DeRatuld A., Lhuguenot J.C., Belin J.M., Effect of cis/trans isomerism of β-carotene on the ratios of volatile compounds produced during oxidative degradation, J. Agric. Food Chem. 51 (2003) 1984–1987. [CrossRef] [PubMed] [Google Scholar]
  40. Mordi R.C., Walton J.C., Burton G.W., Hughes L., Keith I.U., David L.A., Douglas M.J., Oxidative degradation of β-carotene and β-apo-8’-carotenal, Tetrahedron 49 (1993) 911–928. [CrossRef] [Google Scholar]
  41. Qiu D., Chen Z.R., Li H.R., Effect of heating on solid β-carotene, Food Chem. 112 (2009) 344–349. [CrossRef] [Google Scholar]
  42. Kennedy T.A., Liebler D.C., Peroxyl radical scavenging by β-carotene in lipid bilayers - Effect of oxygen partial-pressure, J. Biol. Chem. 267 (1992) 4658–4663. [PubMed] [Google Scholar]
  43. Tsuchihashi H., Kigoshi M., Iwatsuki M., Niki E., Action of β-carotene as an antioxidant against lipid peroxidation, Arch. Biochem. Biophys. 323 (1995) 137–147. [CrossRef] [PubMed] [Google Scholar]
  44. Furr H.C., Analysis of retinoids and carotenoids: Problems resolved and unsolved, J. Nutr. 134 (2004) 281S–285S. [PubMed] [Google Scholar]
  45. Wu X., Sun C.J., Yang L.H., Zeng G., Liu Z.Y., Li Y.M., β-Carotene content in sweet potato varieties from China and the effect of preparation on β-carotene retention in the Yanshu No. 5, Innov. Food Sci. Emerg. Technol. 9 (2008) 581–586. [CrossRef] [Google Scholar]
  46. Shin J.H., Chung H.L., Seo J.K., Sim J.H., Huh C.S., Kil S.K., Baek Y.J., Degradation kinetics of Capsanthin in paprika (Capsanthin annuum L.) as affected by heating, J. Food Sci. 66 (2001) 15–18. [CrossRef] [Google Scholar]
  47. Achir N., Randrianatoandro V.A., Bohuon P., Laffargue A., Avallone S., Kinetic study of β-carotene and lutein degradation in oils during heat treatment, Eur. J. Lipid Sci. Technol. 112 (2010) 349–361. [Google Scholar]
  48. Avallone S., Rojas-Gonzalez J.A., Trystram G., Bohuon P., Thermal sensitivity of some plantain micronutrients during deep-fat frying, J. Food sci. 74 (2009) C339–C347. [CrossRef] [PubMed] [Google Scholar]
  49. Fratianni A., Cinquanta L., Panfili G., Degradation of carotenoids in orange juice during microwave heating, LWT - Food Sci. Technol. 43 (2010) 867–871. [CrossRef] [Google Scholar]
  50. Baldermann S., Naim M., Fleischmann P., Enzymatic carotenoid degradation and aroma formation in nectarines (Prunus persica), Food Res. Int. 38 (2005) 833–836. [CrossRef] [Google Scholar]
  51. Zepka L.Q., Borsarelli C.D., Azevedo M.A., da Silva P., Mercadante A.Z., Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color, J. Agric. Food Chem. 57 (2009) 7841–7845. [CrossRef] [PubMed] [Google Scholar]
  52. Melendez-Martinez A.J., Vicario I.M., Heredia F.J., Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices, J. Agric. Food Chem. 51 (2003) 7266–7270. [CrossRef] [PubMed] [Google Scholar]
  53. Vikram V.B., Ramesh M.N., Prapulla S.G., Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods, J. Food Eng. 69 (2005) 31–40. [CrossRef] [Google Scholar]
  54. Limbo S., Torri L., Piergiovanni L., Light-induced changes in an aqueous β-carotene system stored under halogen and fluorescent lamps, affected by two oxygen partial pressures, J. Agric. Food Chem. 55 (2007) 5238–5245. [CrossRef] [PubMed] [Google Scholar]
  55. Cheftel J.C., Introduction à la biochimie et à la technologie des aliments, Tech. & Doc. Lavoisier, Paris, France, 1992. [Google Scholar]
  56. Liu M.H., Chen B.H., Relationship between chlorophyll a and β-carotene in a lipid-containing model system during heating, Food Chem. 61 (1998) 41–47. [CrossRef] [Google Scholar]
  57. Emenhiser C., Watkins R.H., Simunovic N., Solomons N., Bulux J., Barrows J., Schwartz S.J., Packaging preservation of β-carotene in sweet potato flakes using flexible film and an oxygen absorber, J. Food Qual. 22 (1999) 63–73. [CrossRef] [Google Scholar]
  58. Baiano A., Tamagnone P., Marchitelli V., del Nobile M.A., Quality decay kinetics of semi-preserved sauce as affected by packaging, J. Food Sci. 70 (2005) E92–E97. [CrossRef] [Google Scholar]
  59. Nhung D.T.T., Bung P.N., Ha N.T., Phong T.K., Changes in lycopene and β-carotene contents in aril and oil of gac fruit during storage, Food Chem. 121 (2010) 326–331. [CrossRef] [Google Scholar]
  60. Takahashi A., Shibasaki-Kitakawa N., Yonemoto T., Kinetic model for autoxidation of β-carotene in organic solutions, J. Am. Oil Chem. Soc. 76 (1999) 897–903. [CrossRef] [Google Scholar]
  61. Takahashi A., Shibasaki-Kitakawa N., Toshikuni Y., A rigorous kinetic model for β-carotene oxidation in the presence of an antioxidant, α-tocopherol, J. Am. Oil Chem. Soc. 80 (2003) 1241–1247. [CrossRef] [Google Scholar]
  62. Takahashi A., Suzuki J.-I., Shibasaki-Kitakawa N., Toshikuni Y., A kinetic model for co-oxidation of β-carotene with oleic acid, J. Am. Oil Chem. Soc. 78 (2001) 1203–1207. [CrossRef] [Google Scholar]
  63. Shibasaki-Kitakawa N., Hideto K., Takahashi A., Toshikuni Y., Oxidation kinetics of β-carotene in olein acid solvent with addition of an antioxidant, α-tocopherol, J. Am. Oil Chem. Soc. 81 (2004) 389–394. [CrossRef] [Google Scholar]
  64. Aho L., Wahlroos O., A comparison between determinations of the solubility of oxygen in oils by exponential dilution and chemical methods, J. Am. Oil Chem. Soc. 44 (1967) 65–66. [CrossRef] [Google Scholar]
  65. Benson B.B., Krause D.J., The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. Oceanogr. 29 (1984) 620–632. [CrossRef] [Google Scholar]
  66. Battino R., Evans F.D., Danforth W.F., Solubilities of seven gases in olive oil with reference to theories of transport through cell membrane, J. Am. Oil Chem. Soc. 45 (1968) 830–833. [CrossRef] [PubMed] [Google Scholar]
  67. Ke P.J., Ackman R.G., Bunsen coefficient for oxygen in marine oils at various temperatures determined by an exponential dilution method with a polarographic oxygen electrode, J. Am. Oil Chem. Soc. 50 (1973) 429–435. [CrossRef] [Google Scholar]
  68. Pénicaud C., Guilbert S., Peyron S., Gontard N., Guillard V., Oxygen transfer in foods using oxygen luminescence sensors: Influence of oxygen partial pressure and food nature and composition, Food Chem. 123 (2010) 1275–1281. [CrossRef] [Google Scholar]
  69. Pénicaud C., Peyron S., Gontard N., Guillard, V., Oxygen quantification methods and application to the determination of oxygen diffusion and solubility coefficients in food, Food Rev. Int. (2011), doi:10.1080/87559129.2011.595021. [Google Scholar]
  70. Holst G., Glud R.N., Kühl M., Klimant I., A microoptode array for fine-scale measurement of oxygen distribution, Sens. Actuators B 38–39 (1997) 122–129. [CrossRef] [Google Scholar]
  71. Haralampu S.G., Karel M., Kinetic-models for moisture dependence of ascorbic-acid and β-carotene degradation in dehydrated sweet-potato, J. Food Sci. 48 (1983) 1872–1873. [CrossRef] [Google Scholar]
  72. Mortensen A., Skibsted L.H., Kinetics and mechanism of the primary steps of degradation of carotenoids by acid in homogeneous solution, J. Agric. Food Chem. 48 (2000) 279–286. [CrossRef] [PubMed] [Google Scholar]
  73. Assuncao R.B., Mercadante A.Z., Carotenoids and ascorbic acid composition from commercial products of cashew apple (Anacardium occidentale L.), J. Food Compos. Anal. 16 (2003) 647–657. [CrossRef] [Google Scholar]
  74. Goulson M.J., Warthesen J.J., Stability and antioxidant activity of β-carotene in conventional and high oleic canola oil, J. Food Sci. 64 (1999) 996–999. [CrossRef] [Google Scholar]
  75. Budowski P., Brondi A., Autoxidation of carotene and vitamin A influence of fat and antioxidants, Arch. Biochem. Biophys. 89 (1960) 66–73. [CrossRef] [PubMed] [Google Scholar]
  76. Pérez-Gálvez A., Mínguez-Mosquera M.I., Degradation, under non-oxygen-mediated autooxidation, of carotenoid profile present in paprika oleoresins with lipid substrates of different fatty acid composition, J. Agric. Food Chem. 52 (2004) 632–637. [CrossRef] [PubMed] [Google Scholar]
  77. Sambanthamurthi R., Sundram K., Tan Y.-A., Chemistry and biochemistry of palm oil, Prog. Lipid Res. 39 (2000) 507–558. [CrossRef] [PubMed] [Google Scholar]
  78. Zhang P., Omaye S.T., β-Carotene and protein oxidation: effects of ascorbic acid and α-tocopherol, Toxicology 146 (2000) 37–47. [CrossRef] [PubMed] [Google Scholar]
  79. Haila K.M., Lievonen S.M., Heinonen M.I., Effects of lutein, lycopene, annatto, and γ-tocopherol on autoxidation of triglyceride, J. Agric. Food Chem. 44 (1996) 2096–2100. [CrossRef] [Google Scholar]
  80. Palozza P., Calviello G., Bartoli G.M., Prooxidant activity of β-carotene under 100% oxygen pressure in rat liver microsomes, Free Radic. Biol. Med. 19 (1995) 887–892. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  81. Packer L., Antioxidant action of carotenoids in vitro and in vivo and protection against oxidation of human low–density lipo-proteins, Ann. N. Y. Acad. Sci. 691 (1993) 48–60. [CrossRef] [PubMed] [Google Scholar]
  82. Polyakov N.E., Leshina T.V., Konovalova T.A., Kispert L.D., Carotenoids as scavengers of free radicals in a fenton reaction: antioxidants or pro-oxidants? Free Radic. Biol. Med. 31 (2001) 398–404. [Google Scholar]
  83. Boon C.S., McClements D.J., Weiss J., Decker E.A., Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions, J. Agric. Food Chem. 57 (2009) 2993–2998. [CrossRef] [PubMed] [Google Scholar]
  84. Simpson D.J., Baqar M.R., Lee T.H., Fine structure of the chromoplasts of fruit of Solanum aviculare Forth. var. Brisbanense, Aust. J. Bot. 26 (1978) 783–792. [CrossRef] [Google Scholar]
  85. Vasquez-Caceido A.L., Heller A., Neidhart S., Carle R., Chromoplast morphology and β-carotene accumulation during postharvest ripening of mango cv. ‘Tommy Atkins’, J. Agric. Food Chem. 54 (2006) 5769–5776. [CrossRef] [PubMed] [Google Scholar]
  86. Olatun de Farombi E., Britton G., Antioxidant activity of palm oil carotenes in organic solution: effects of structure and chemical reactivity, Food Chem. 64 (1999) 315–321. [CrossRef] [Google Scholar]
  87. Nguyen M., Francis D., Schwartz S., Thermal isomerisation susceptibility of carotenoids in different tomato varieties, J. Sci. Food Agric. 81 (2001) 910–917. [CrossRef] [Google Scholar]
  88. Abushita A.A., Daood H.G., Biacs P.A., Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors, J. Agric. Food Chem. 48 (2000) 2075–2081. [CrossRef] [PubMed] [Google Scholar]
  89. Martins S., Van Boekel M., A kinetic model for the glucose/glycine Maillard reaction pathways, Food Chem. 90 (2005) 257–269. [CrossRef] [Google Scholar]
  90. Kim Y.-N., Giraud D.W., Driskell J.A., Tocopherol and carotenoid contents of selected Korean fruits and vegetables, J. Food Compos. Anal. 20 (2007) 458–465. [CrossRef] [Google Scholar]
  91. Kandlakunta B., Rajendran A., Thingnganing L., Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin, Food Chem. 106 (2008) 85–89. [CrossRef] [Google Scholar]
  92. Bhaskarachary K., Rao D.S.S., Deosthale Y.G., Reddy V., Carotene content of some common and less familiar foods of plant origin, Food Chem. 54 (1995) 189–193. [CrossRef] [Google Scholar]
  93. Bora P.S., Rocha R.V.M., Narain N., Moreira-Monteiro A.C., Moreira R.A., Characterization of principal nutritional components of Brazilian oil palm (Eliaes guineensis) fruits, Bioresour. Technol. 87 (2003) 1–5. [CrossRef] [PubMed] [Google Scholar]
  94. Ngoh Newilah G., Dhuique-Mayer C., Rojas-Gonzalez J.A., Tomekpe K., Fokou E., Etoa F.X., Carotenoid contents during ripening of banana hybrids and cultivar grown in Cameroon, Fruits 64 (2009) 197–205. [CrossRef] [EDP Sciences] [Google Scholar]
  95. Dhuique-Mayer C., Caris-Veyrat C., Ollitrault P., Curk F., Amiot M.J., Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area, J. Agric. Food Chem. 53 (2005) 2140–2145. [CrossRef] [PubMed] [Google Scholar]
  96. Giuffrida D., Dugo P., Salvo A., Saitta M., Dugo G., Free carotenoid and carotenoid ester composition in native orange juices of different varieties, Fruits 65 (2010) 277–284. [CrossRef] [EDP Sciences] [Google Scholar]
  97. Goula A.M., Adamopoulos K.G., Kinetic models of β-carotene degradation during air drying of carrots, Dry. Technol. 28 (2010) 752–761. [CrossRef] [Google Scholar]
  98. Holdsworth S.D., Thermal processing of packaged foods, Blackie Acad. & Prof., Lond., U.K., 1997. [Google Scholar]
  99. Ahmed J., Shivhare U.S., Sandhu K.S., Thermal degradation kinetics of carotenoids and visual color of papaya puree, J. Food Sci. 67 (2002) 2692–2695. [CrossRef] [Google Scholar]
  100. Henry L.K., Catignani G.L., Schwartz S.J., Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene, J. Am. Oil Chem. Soc. 75 (1998) 823–829. [CrossRef] [Google Scholar]