Free Access
Issue
Fruits
Volume 69, Number 1, January-February 2014
Page(s) 41 - 46
DOI https://doi.org/10.1051/fruits/2013101
Published online 28 January 2014
  1. Beattie J., Crozier A., Duthie G.G., Potential health benefits of berries, Curr. Nutr. Food Sci. 1 (2005) 71–86. [CrossRef] [Google Scholar]
  2. Yildiz Ö., Peral-Eyduran S., Functional components of berry fruits and their usage in food technologies, Afr. J. Agric. Res. 4 (2009) 422–426. [Google Scholar]
  3. Chávez-Martínez O., Cultivo y manejo de la zarzamora, Univ. Michoacana de San Nicolás de Hidalgo, Thesis, Michoacán, México, 47 p. [Google Scholar]
  4. Li W.L., Wu W.L., Zhang C.H., Lu L.F., Wang X.M., Shu H.R., The status of industry development and scientific research of blackberry (Rubus spp.) in the world, with a prospect in China, J. Plant Resour. Environ. 21 (2012) 105–115. [Google Scholar]
  5. Hernández-Lauzardo A.N., Velázquez-Del Valle M.G., Veranza-Castelán L., Melo-Giorgana G.E., Guerra-Sánchez M.G., Effect of chitosan on three isolates of Rhizopus stolonifer obtained of peach, papaya and tomato, Fruits 65 (2010) 245–253. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Dufour M.C., Fontaine S., Montarry J., Corio-Costet M.F., Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays, Pestic. Manag. Sci. 67 (2011) 60–69. [CrossRef] [Google Scholar]
  7. Abraham A., Laing M.D., Bower J.P., Isolation and in vivo screening of yeast and Bacillus antagonists for the control of Penicillium digitatum of citrus fruit, Biol. Control 53 (2010) 32–38. [CrossRef] [Google Scholar]
  8. Droby S., Wisniewski M., Macarisin D., Wilson C., Twenty years of postharvest biocontrol research: Is it time for a new paradigm?, Postharvest Biol. Technol. 52 (2009) 137–145. [CrossRef] [Google Scholar]
  9. Schipper M.A., A revision of the genus Rhizopus, Stud. Mycol. 25 (1984) 1–34. [Google Scholar]
  10. Guo Z., Chen R., Xing R., Liu S., Yu H., Wang P., Li C., Li P., Novel derivatives of chitosan and their antifungal activities in vitro, Carbohydr. Res. 341 (2006) 351–354. [CrossRef] [PubMed] [Google Scholar]
  11. Schwyn B., Neilands J.B., Universal chemical assay for the detection and determination of siderophores, Anal. Biochem. 160 (1987) 46–56. [CrossRef] [Google Scholar]
  12. Hernández-Lauzardo A.N., Bautista-Baños S., Trejo-Espino J.L., Velázquez-del Valle M.G., Identification of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. causal agent of Rhizopus rot disease of fruits and vegetables, Mex. J. Phytopathol. 24 (2006) 65–69. [Google Scholar]
  13. Velázquez-del Valle M.G., Bautista-Baños S., Hernández-Lauzardo A.N., Guerra-Sánchez M.G., Amora-Lazcano E., Estrategias de control de Rhizopus stolonifer Ehrenb. (Ex Fr.) Lind., agente causal de pudriciones postcosecha en productos agrícolas, Mex. J. Phytopathol. 26 (2008) 49–55. [Google Scholar]
  14. Gawai D.U., Deshpande R.P., Lonkar G., Effect of pectolytic enzymes on clarification of selected fruit juices, Asian J. Microbiol. Biotechnol. Environ. Sci. 11 (2009) 593–596. [Google Scholar]
  15. Yánez-Mendizábal V., Zeriouh H., Viñas I., Torres R., Usall J., de Vicente A., Pérez-García A., Teixidó N., Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides, Eur. J. Plant Pathol. 132 (2012) 609–619. [CrossRef] [Google Scholar]
  16. Yu X., Ai C., Xin L., Zhou G., The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper, Eur. J. Soil Biol. 47 (2011) 138–145. [CrossRef] [Google Scholar]