Free Access
Volume 69, Number 6, November-December 2014
Page(s) 425 - 434
Published online 03 October 2014
  1. Hajare S.N., Saxena S., Kumar S., Wadhawan S., More V., Mishra B.B., Narayan Parte M., Gautam S., Sharma A., Quality profile of litchi (Litchi chinensis) cultivars from India and effect of radiation processing, Radiat. Phys. Chem. 79 (2010) 994–1004. [CrossRef] [Google Scholar]
  2. Jiang Y., Duan X., Joyce D., Zhang Z., Li J., Advances in understanding of enzymatic browning in harvested litchi fruit, Food Chem. 88 (2004) 443–446. [CrossRef] [Google Scholar]
  3. Wei B., Huang L., Teng J., Jia M., Chemical compositional characterization of ten litchi cultivars, 2011 Int. Conf. on New Technology of Agricultural Engineering (ICAE), Zibo, Chine, 2011. [Google Scholar]
  4. Chyau C.-C., Ko P.-T., Chang C.-H., Mau J.-L., Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.), Food Chem. 80 (2003) 387–392. [CrossRef] [Google Scholar]
  5. Lima R.A.Z., Abreu C.M.P. de, Asmar S.A., Corrêa A.D., Santos C.D. de, Embalagens e recobrimento em lichias (Litchi chinensis Sonn.) armazenadas sob condições não controladas, Ciênc. Agrotecnol. 34 (2010) 914–921. [CrossRef] [Google Scholar]
  6. Martins A.B.G., Lichia, Revi. Bras. Frutic. 27 (2005) 1–4. [CrossRef] [Google Scholar]
  7. Lee S.K., Kader A.A., Preharvest and postharvest factors influencing vitamin C content of horticultural crop, Postharvest Biol. Technol. 20 (2000) 207–220. [CrossRef] [Google Scholar]
  8. Queiroz E. de R., Abreu C.M.P. de, Oliveira K. de S., Constituintes químicos das frações de lichia in natura e submetidas à secagem: potencial nutricional dos subprodutos, Rev. Bras. Frutic. 34 (2012) 1174–1179. [CrossRef] [Google Scholar]
  9. Chang J.-C., Lin T.-S., GA3 increases fruit weight in ‘Yu Her Pau’ litchi, Sci. Hortic. 108 (2006) 442–443. [CrossRef] [Google Scholar]
  10. Wall M.M., Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambutan (Nephelium lappaceum) cultivars grown in Hawaii, J. Food Compos. Anal. 19 (2006) 655–663. [CrossRef] [Google Scholar]
  11. Charoensiri R., Kongkachuichai R., Suknicom S., Sungpuag P., Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits, Food Chem. 113 (2009) 202–207. [CrossRef] [Google Scholar]
  12. Anon., Normas analíticas do Instituto Adolfo Lutz, Inst. Adolfo Lutz, São Paulo, Brazil, 2005. [Google Scholar]
  13. Anon., Official methods of analysis of the Association of Official Analytical Chemists, Assoc. Off. Anal. Chem. (AOAC), Wash., D.C., U.S.A., 1998. [Google Scholar]
  14. Frary C.D., Johnson R.K., Energia, in: Mahan L.K., Escott-Stump S. (Eds.), Krause: alimentos, nutrição e dietoterapia, Rocca, São Paulo, Brazil, 2005. [Google Scholar]
  15. Rodriguez-Amaya D.B., Raymundo L.C., Lee T.-C., Simpson K.L., Chichester C.O., Carotenoid changes in ripening Momordica charantia, Ann. Bot. 40 (1976) 615–624. [Google Scholar]
  16. Pinheiro-Sant'Ana H.M., Stringheta P.C., Brandão S.C.C., Azeredo R.M.C., Carotenoid retention and vitamin A value in carrot (Daucus carota L.) prepared by food service, Food Chem. 61 (1998) 145–151. [CrossRef] [Google Scholar]
  17. Campos F.M., Ribeiro S.M.R., Della Lucia C.M., Pinheiro-Sant'Ana H.M., Stringheta P.C., Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables, Quím. Nova 32 (2009) 87–91. [CrossRef] [Google Scholar]
  18. Pinheiro-Sant'Ana H.M., Guinazi M., Oliveira D.d.S., Della Lucia C.M., Reis B.D.L., Brandão S.C.C., Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection, J. Chromatogr. A. 1218 (2011) 8496–8502. [CrossRef] [PubMed] [Google Scholar]
  19. Ekholm P., Reinivuo H., Mattila P., Pakkala H., Koponen J., Happonen A., Hellström J., Ovaskainen M.-L., Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland, J. Food Compos. Anal. 20 (2007) 487–495. [CrossRef] [Google Scholar]
  20. Philippi S.T., Pirâmide dos alimentos: fundamentos básicos da nutrição, Manole, Barueri, Brazil, 2008. [Google Scholar]
  21. Anon., Reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 1998. [Google Scholar]
  22. Anon., Dietary Reference Intakes (DRIs): vitamin A, vitamin K, arsenic, boron, cromium, copper, iodine, iron, manganese, molybdenium, nickel, silicon, vanadium and zinc, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 2001. [Google Scholar]
  23. Anon., Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 2000. [Google Scholar]
  24. Neog M., Saikia L., Control of post-harvest pericarp browning of litchi (Litchi chinensis Sonn.), J. Food Sci. Technol. 47 (2010) 100–104. [CrossRef] [PubMed] [Google Scholar]
  25. Anon., Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 2005. [Google Scholar]
  26. Anon., Tabela Brasileira de Composição de Alimentos, Núcleo de Estudos e Pesquisa em Alimentação, NEPA-UNICAMP, Campinas, SP, Brazil, 2011. [Google Scholar]