Free Access
Issue |
Fruits
Volume 70, Number 2, March-April 2015
|
|
---|---|---|
Page(s) | 63 - 68 | |
DOI | https://doi.org/10.1051/fruits/2014045 | |
Published online | 12 March 2015 |
- Steinmetz K.A., Potter J.D., Vegetables, fruit, and cancer prevention: a review, J. Am. Diet. Assoc. 96 (1996) 1027. [CrossRef] [PubMed] [Google Scholar]
- Luo Z., Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit, LWT-Food Sci. Technol. 40 (2007) 285–291. [CrossRef] [Google Scholar]
- Lamattina L., García-Mata C., Graziano M., Pagnussat G., Nitric oxide: the versatility of an extensive signal molecule, Annu. Rev. Plant Biol. 54 (2003) 109–136. [CrossRef] [PubMed] [Google Scholar]
- Neill S.J., Desikan R., Hancock J.T., Nitric oxide signalling in plants, New Phytol. 159 (2003) 11–35. [CrossRef] [Google Scholar]
- Singh Z., Khan A. S., Zhu Sh., Payne A. D., Nitric oxide in the regulation of fruit ripening: challenges and thrusts, Stewart Postharvest Rev. 9 (2013) 1–11. [Google Scholar]
- Leshem Y., Wills R., Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce, Biol. Plantarum 41 (1998) 1–10. [CrossRef] [Google Scholar]
- Leshem Y.A.Y., Haramaty E., The Characterization and Contrasting Effects of the Nitric Oxide Free Radical in Vegetative Stress and Senescence of Pisum sativum Linn. Foliage, J. Plant Physiol. 148 (1996) 258–263. [CrossRef] [Google Scholar]
- Soegiarto L., Wills R., Effect of nitric oxide, reduced oxygen and elevated carbon dioxide levels on the postharvest life of strawberries and lettuce, Anim. Prod. Sci. 46 (2006) 1097−1100. [CrossRef] [Google Scholar]
- Zhu S., Liu M., Zhou J., Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage, Postharvest Biol. Technol. 42 (2006) 41–48. [CrossRef] [Google Scholar]
- Duan x., Su X., You Y., Qu H., Li Y., Jiang Y., Effect of nitric oxide on pericarp browning of harvested longan fruit in relation to phenolic metabolism, Food Chem. 104 (2007) 571–576. [CrossRef] [Google Scholar]
- Duan X., You YL., Su X.G., Qu H.X., Joyce D.C., Jiang Y.M., Influence of the nitric oxide donor, sodium nitroprusside, on lipid peroxidation and anti-oxidant activity in pericarp tissue of longan fruit, J Hort. Sci. Biotechnol. 82 (2007) 467–473. [Google Scholar]
- Singh S., Singh Z., Swinny E., Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums (Prunus salicina Lindell), Postharvest Biol. Technol. 53 (2009) 101–108. [CrossRef] [Google Scholar]
- Zhu S., Sun L., Zhou J., Effects of nitric oxide fumigation on phenolic metabolism of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao) in relation to fruit quality, LWT-Food Sci. Technol. 42 (2009) 1009–1014. [CrossRef] [Google Scholar]
- Wills R., Soegiarto L., Bowyer M., Use of a solid mixture containing diethylenetriamine/nitric oxide (DETANO) to liberate nitric oxide gas in the presence of horticultural produce to extend postharvest life, Nitric Oxide 17 (2007) 44–49. [CrossRef] [PubMed] [Google Scholar]
- Manjunatha G., Lokesh V., Neelwarne B., Singh Z., Gupta K. J., Nitric oxide applications for quality enhancement of horticulture produce, Hortic. Rev. 42 (2014) 121–156. [Google Scholar]
- Asghari M., Khalili H., Rasmi Y., Mohammadzadeh A., Influence of postharvest nitric oxide and Aloe vera gel application on sweet cheery quality indices and storage life, Int. J. Agron. Plant Produc. 4 (2013) 2393–2398. [Google Scholar]
- Sharma S., Sharma R., Nitric oxide inhibits activities of PAL and PME enzymes and reduces chilling injury in ‘Santa Rosa’ Japanese plum (Prunus salicina Lindell), J. Plant Biochem. Biotechnol. 1-6. [Google Scholar]
- Barman K., Siddiqui M. W., Patel V.B., Prasad M., Nitric oxide reduces pericarp browning and preserves bioactive antioxidants in litchi, Sci. Horticult. 171 (2014) 71–77. [CrossRef] [Google Scholar]
- Müller H.E., Detection of hydrogen peroxide produced by microorganisms on an ABTS peroxidase medium, Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, Series A: Medical Microbiology, Infectious Diseases, Virology, Parasitology, 259 (1985) 151–154. [Google Scholar]
- Gutfinger T., Polyphenols in olive oils, J. Am. Oil Chem. Soc. 58 (1981) 966–968. [Google Scholar]
- Arnal L., Del Río M., Quality of persimmon fruit cv. ‘Rojo Brillante’ during storage at different temperatures, Span. J. Agric. Res. 2 (2004) 243–247. [CrossRef] [Google Scholar]
- Afshari-Jouybari H., Farahnaky A., Evaluation of photoshop software potential for food colorimetry, J. Food Engin. 106 (2011) 170–175. [CrossRef] [Google Scholar]
- Leshem Y.Y., Pinchasov Y., Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.), J. Exp. Bot. 51 (2000) 1471–1473. [CrossRef] [PubMed] [Google Scholar]
- Mahajan P.V., Caleb O.J., Singh Z., Watkins C.B., Geyer M., Postharvest treatments of fresh produce, Phil. Trans. R. Soc. A Math. Phys. Engin. Sci. 372 (2014) 20130309. [CrossRef] [Google Scholar]
- Wills R., Ku V., Leshem Y., Fumigation with nitric oxide to extend the postharvest life of strawberries, Postharvest Biol. Technol. 18 (2000) 75–79. [CrossRef] [Google Scholar]
- Sozzi G.O., Trinchero G.D., Fraschina A.A., Delayed ripening of ’Bartlett’ pears treated with nitric oxide, J. Hort. Sci. Biotechnol. 78 (2003) 899–903. [Google Scholar]
- Zaharah S., Singh Z., Mode of action of nitric oxide in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of ‘Kensington Pride’mango, Postharvest Biol. Technol. 62 (2011) 258–266. [CrossRef] [Google Scholar]
- Bibi N., Khattak A.B., Mehmood Z., Quality improvement and shelf life extension of persimmon fruit (Diospyros kaki), J. Food Engin. 79 (2007) 1359–1363. [CrossRef] [Google Scholar]
- Li S.M., Liu L.D., Zhang L., Wu R.Z., Zhu X.K., Ming J., Effect of nitric oxide treatment on storage quality and disease resistance of satsuma mandarin fruits, Adv. Mater. Res. 524 (2012) 2163–2166. [Google Scholar]
- Nakano R., Harima S., Ogura E., Inoue S., Kubo Y., Inaba A., Involvement of stress-induced ethylene biosynthesis in fruit softening of ’Saijo’ persimmon (Diospyros kaki), J. Japan. Soc. Hortic. Sci. 70 (2001). [Google Scholar]
- Gil M.I., Tomas-Barberan F.A., Hess-Pierce B., Kader A.A., Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California, J. Agric. Food Chem. 50 (2002) 4976–4982. [CrossRef] [PubMed] [Google Scholar]
- Wang S.Y., Lin H.S., Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage, J. Agric. Food Chem. 48 (2000) 140–146. [CrossRef] [PubMed] [Google Scholar]
- Bonilla F., Mayen M., Merida J., Medina M, Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants, Food Chem. 66 (1999) 209–215. [CrossRef] [Google Scholar]
- Pazos M., Gallardo J.M., Torres J.L., Medina I, Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle, Food Chem. 92 (2005) 547–557. [CrossRef] [Google Scholar]
- Lai T., Wang Y., Li B., Qin G., Tian S., Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage, Postharvest Biol. Technol. 62 (2011) 127–132. [CrossRef] [Google Scholar]