Free Access
Volume 70, Number 6, November-December 2015
Page(s) 377 - 383
Published online 30 October 2015
  1. Liu W.R., Qiao W.L., Liu Z.Z., Wang X. H., Jiang R., Li S.Y., Shi R.B., She G.M., Gaultheria: Phytochemical and pharmacological characteristics, Molecules 18 (2013) 12071–12108. [CrossRef] [PubMed] [Google Scholar]
  2. Fraser L., Turkington R., Chanway C.P., The biology of Canadian weeds. 102. Gaultheria shallon Pursh., Can. J. Plant Sci. 73 (1993) 1233–1247. [CrossRef] [Google Scholar]
  3. Pojar J., MacKinnon A., Plants of the Pacific Northwest Coast Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, Canada, 2004. [Google Scholar]
  4. Keely P.B., Martinsen C.S., Hunn E.S., Norton H.H., Composition of native American fruits in the Pacific Northwest, J. Am. Diet. Assoc. 81 (1982) 568–572. [PubMed] [Google Scholar]
  5. Turner N.J., Food Plants of British Columbia Indians, Handbook No. 34, British Columbia Provincial Museum, British Columbia, Canada, 1975. [Google Scholar]
  6. Hobby T., Dow K., MacKenzie S., Commercial development of salal on southern Vancouver Island, BC J. Ecosyst Manag 11 (2010) 62–71. [Google Scholar]
  7. Messier C., Kimmins J.P., Above- and below-ground vegetation recovery in recently clearcut and burned sites dominated by Gaultheria shallon in coastal British Columbia, For. Ecol. Manag. 46 (1991) 275–294. [CrossRef] [Google Scholar]
  8. Messier C., Mitchell A.K., Effects of thinning in a 43-year-old Douglas-fir stand on above- and below-ground biomass allocation and leaf structure of understory Gaultheria shallon, For. Ecol. Manag. 68 (1994) 263–271. [CrossRef] [Google Scholar]
  9. Prescott C.E., Coward L.P., Weetman G.F., Gessel S.P., Effects of repeated nitrogen fertilization on the ericaceous shrub, salal (Gaultheria shallon), in two coastal Douglas-fir forests, For. Ecol. Manag. 61 (1993) 45–60. [CrossRef] [Google Scholar]
  10. Kähkönen M., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M., Antioxidant activity of plant extracts containing phenolic compounds, J. Agric. Food Chem. 47 (1999) 3954–3962. [CrossRef] [PubMed] [Google Scholar]
  11. Seeram N.P., Berry fruits for cancer prevention: current status and future prospects, J. Agric. Food Chem. 56 (2008) 630–635. [CrossRef] [PubMed] [Google Scholar]
  12. Soto-Vaca A., Gutierrez A., Losso J.N., Xu Z., Finley J.W., Evolution of phenolic compounds from color and flavor problems to health benefits, J. Agric. Food Chem. 60 (2012) 6658−6677. [CrossRef] [PubMed] [Google Scholar]
  13. De Pascual-Teresa S., Sanchez-Ballesta M.T., Anthocyanins: from plant to health, Phytochem. Rev. 7 (2008) 281–299. [CrossRef] [Google Scholar]
  14. Acuña U.M., Atha D.E., Ma J., Nee M.H., Kennelly E.J., Antioxidant capacities of ten edible North American plants, Phytother. Res. 16 (2002) 63–65. [PubMed] [Google Scholar]
  15. Einbond L.S., Reynertson K.A., Luo XD., Basile M.J., Kennelly E.J., Anthocyanin antioxidants from edible fruits, Food Chem. 84 (2004) 23–28. [CrossRef] [Google Scholar]
  16. Crawford R.M.M., Ecological hazards of oceanic environments, Tansley Review No. 114, New Phytol. 147 (2000) 257–281. [CrossRef] [Google Scholar]
  17. Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Method. Enzymol. 299 (1999) 152–178. [Google Scholar]
  18. Deighton N., Brennan R., Finn C., Davies H.V., Antioxidant properties of domesticated and wild Rubus species, J. Sci. Food Agric. 80 (2000) 1307–1313. [CrossRef] [Google Scholar]
  19. Martinussen I., Nestby R., Nes A., Potential of the European wild blueberry (Vaccinium myrtillus) for cultivation and industrial exploitation in Norway, Acta Hort. 810 (2009) 211–216. [CrossRef] [Google Scholar]
  20. Ihalainen M., Salo K., Pukkala T., Empirical prediction models for Vaccinium myrtillus and V. vitis-idaea berry yields in North Karelia, Finland, Silva Fenn. 37 (2003) 95–108. [CrossRef] [Google Scholar]
  21. Nestby R., Percival D., Martinussen I., Opstad N., Rohloff J., The European blueberry (Vaccinium myrtillus L.) and the potential for cultivation, A Review, Eur. J. Plant Sci. Biotech. 5 (2011) 5–16. [Google Scholar]
  22. Turtiainen M., Salo K., Saastamoinen O., Variations of yield and utilisation of bilberries (Vaccinium myrtillus L.) and cowberries (V. vitis-idaea L.) in Finland, Silva Fenn. 45 (2011) 237–251. [CrossRef] [Google Scholar]
  23. Selås V., Seed production of a masting dwarf shrub, Vaccinium myrtillus, in relation to previous reproduction and weather, Can. J. Bot. 78 (2000) 423–429. [Google Scholar]
  24. Lepofsky D., Turner N.J.Kuhnlein H.V., Determining the availability of traditional wild plant foods: an example of Nuxalk foods, Bella Coola, British Columbia, Ecol. Food Nutr. 16 (1985) 223–241. [CrossRef] [Google Scholar]
  25. Funt R.C., Wall T.E., Scheerens J.C., Yield, berry quality, and economics of mechanical berry harvest in Ohio, The Ohio State Univ. Res. Circular 299-99 (1999). [Google Scholar]
  26. Strik B., Finn C., Wrolstad R., Performance of chokeberry (Aronia melanocarpa) in Oregon, USA, Acta Hort. 626 (2003) 439–443. [CrossRef] [Google Scholar]
  27. Olien W.C., Bukovac M.J., The effect of temperature on rate of ethylene evolution from ethephon and from ethephon-treated leaves of sour cherry, J. Am. Soc. Hort. Sci. 103 (1978) 199−202. [Google Scholar]
  28. McGarry R., Ozga J.A., Reinecke D.M., The effects of ethephon on Saskatoon (Amelanchier alnifolia Nutt) fruit ripening, J. Am. Soc. Hort. Sci. 130 (2005) 12–17. [Google Scholar]
  29. Brennan R.M. Currants and gooseberries, in: Janick J., Moore J.N. (Eds.), Fruit breeding, vol. II: small fruits and vine crops, Wiley New York, 1996. [Google Scholar]
  30. Deighton N., Stewart D., Davies H.V., Gardner P.T., Duthie G.G., Mullen W., Crozier A., Soft fruit as sources of dietary antioxidants, Acta Hort. 585 (2002) 459–465. [CrossRef] [Google Scholar]
  31. Kalt W, Lawand C, Ryan D.A.J., McDonald JE, Donner H, Forney CF. Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. J Am. Soc. Hort. Sci. 128 (2003) 917–923. [Google Scholar]
  32. Wang S.Y., Chen H., Camp M.J., Ehlenfeldt M.K., Genotype and growing season influence blueberry antioxidant capacity and other quality attributes, Int. J. Food Sci Tech. 47 (2012) 1540–1549. [Google Scholar]
  33. Wang S.Y., Lin HS., Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stage, J. Agric. Food Chem 48 (2000) 140–146. [CrossRef] [PubMed] [Google Scholar]
  34. Huffman D.W., Zasada J.C., Tappeiner II J.C., Growth and morphology of rhizome cuttings and seedlings of salal (Gaultheria shallon): effects of four light intensities, Can. J. Bot. 72 (1994) 1702–1708. [CrossRef] [Google Scholar]
  35. Hepler P.R. Yarborough D.E. Natural variability in yield of lowbush blueberries HortScience 26 (1991) 245–246. [Google Scholar]
  36. GB Non Native Species Secretariat, Shallon, Gaultheria shallon, (accessed 28 January, 2015). [Google Scholar]
  37. Tappeiner J.C., Zasada J.C. Establishment of salmonberry, salal, vine maple, and bigleaf maple seedlings in the coastal forests of Oregon Can J For Res 23 (1993) 1775–1780. [CrossRef] [Google Scholar]