Free Access
Volume 70, Number 6, November-December 2015
Page(s) 371 - 375
Published online 30 October 2015
  1. Zulak K.G., Alkaloid, in: Crozier, A. (Ed.), Plant secondary metabolites: Occurence, structure and role in Human diet, Blackwell Publishing, USA, 2006. [Google Scholar]
  2. Ziegler J., Facchini P.J., Alkaloid biosynthesis: Metabolism and trafficking, Annu. Rev Plant Biol. 59 (2008) 735–769. [CrossRef] [PubMed] [Google Scholar]
  3. Dinan L., Harmatha J., Lafont R., Chromatographic procedures for the isolation of plant steroids, J. Chromatogr. A 935 (2001) 105–123. [CrossRef] [PubMed] [Google Scholar]
  4. Kreft S., Zel J., Pukl M., Umek A., Strukelj B., Non-aqueous capillary electrophoresis for the simultaneous analysis of solasodine and solasonine, Phytochem. Anal. 11 (200) 37–40. [CrossRef] [Google Scholar]
  5. Kuronen P., Vaananen T., Pehu E., Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones, J. Chromatogr. A 863 (1999) 25–35. [CrossRef] [PubMed] [Google Scholar]
  6. Friedman M., Potato glycoalkaloids and metabolites: Roles in the plant and in the diet, J. Agric. Food Chem. 54 (2006) 8655−8681. [CrossRef] [PubMed] [Google Scholar]
  7. McCue K.F., Allen P.V., Shepherd L.V.T., Blake A., Rockhold D.R., Novy R.G., Stewart D., Davies H.V., Belknap W.R., Manipulation and compensation of steroidal glycoalkaloid biosynthesis in potatoes, Acta Hort. 745 (2007) 343–350. [CrossRef] [Google Scholar]
  8. Stobiecki M., Matysiak-Kata W., Franski R., Skala J., Szopa J., Monitoring changes in anthocyanin and steroid alkaloid glycoside content in lines of transgenic potato plants using liquid chromatography/mass spectrometry, Phytochemistry 62 (2003) 959–969. [CrossRef] [PubMed] [Google Scholar]
  9. Zrust J., The glycoalkaloid content in potato tubers (Solanum tuberosum L.) as affected by cultivation technology and mechanical damage, Rostlinna Vyroba, 43 (1997) 509–515. [Google Scholar]
  10. Kodamatani H., Saito K., Niina N., Yamazaki S.Tanaka Y., Simple and sensitive method for determination of glycoalkaloids in potato tubers by high-performance liquid chromatography with chemiluminescence detection, J. Chromatogr. A 1100 (2005) 26–31. [CrossRef] [PubMed] [Google Scholar]
  11. Väänänen T., Glycoalkaloid content and starch structure in solanum species and interspecific somatic potato hybrids University of Helsinki, Helsinki, Finland, Thesis, 2007, 13−23 p. [Google Scholar]
  12. Alt V., Steinhof R., Lotz M., Ulber R., Kasper C., Scheper T., Optimization of glycoalkaloid analysis for use in industrial potato fruit juice downstreaming, Eng. Life Sci. 5 (2005) 562−567. [CrossRef] [Google Scholar]
  13. Langkilde S., Mandimika T., Schroder M., Meyer O., Slob W., Peijnenburg A., Poulsen M., A 28-day repeat dose toxicity study of steroidal glycoalkaloids, alpha-solanine and alpha-chaconine in the Syrian Golden hamster, Food Chem. Toxicol. 47 (2009) 1099–1108. [CrossRef] [PubMed] [Google Scholar]
  14. Nema P.K., Ramayya N., Duncan E., Niranjan K., Potato glycoalkaloids: formation and strategies for mitigation, J. Sci. Food Agric. 88 (2008) 1869–1881. [CrossRef] [Google Scholar]
  15. Sauerbrei A., Wutzler P., Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy. Part 1: Herpes simplex virus infections, Med. Microbiol. Immun. 196 (2007) 89–94. [CrossRef] [Google Scholar]
  16. Plhak L.C., Biological activities of potato glycoalkaloids, in: Shahidi, F. (Ed.), Antinutrients and Phytochemicals in Food, ACS Publications, Washington, USA, 1997. [Google Scholar]
  17. Kittipongpatana N., Porter J.R., Hock R.S., An improved high performance liquid chromatographic method for the quantification of solasodine, Phytochem. Anal. 10 (1999) 26–31. [CrossRef] [Google Scholar]
  18. Abouzid S., Fawzy N., Darweesh N., Orihara Y., Steroidal glycoalkaloids from the berries of Solanum distichum, Nat. Prod. Res. 22 (2008) 147–153. [CrossRef] [PubMed] [Google Scholar]
  19. Nakamura S., Hongo M., Sugimoto S., Matsuda H., Yoshikawa M., Steroidal saponins and pseudoalkaloid oligoglycoside from Brazilian natural medicine, “fruta do lobo” (fruit of Solanum lycocarpum), Phytochemistry, 69 (2008) 1565–1572. [CrossRef] [PubMed] [Google Scholar]
  20. Usubillaga A., Aziz I., Tettamanzi N.C., Waibel R., Achenbach H., Steroidal alkaloids from Solanum sycophanta, Phytochemistry 44 (1997) 537–543. [CrossRef] [Google Scholar]
  21. Wanyonyi A.W., Chhabra S.C., Mkoji G., Eilert U., Njue W.M., Bioactive steroidal alkaloid glycosides from Solanum aculeastrum, Phytochemistry 59 (2001) 79–84. [CrossRef] [PubMed] [Google Scholar]
  22. Weissenberg M., Isolation of solasodine and other steroidal alkaloids and sapogenins by direct hydrolysis-extraction of Solanum plants or glycosides therefrom, Phytochemistry 58 (2001) 501–508. [CrossRef] [PubMed] [Google Scholar]
  23. Maurya A., Gupta S., Negi S., Srivastava S.K., pH-Zone-refining centrifugal partition chromatography for preparative isolation and purification of steroidal glycoalkaloids from Solanum xanthocarpum, J. Sep. Sci. 32 (2009) 3126–3132. [CrossRef] [PubMed] [Google Scholar]
  24. Schwarz A., Pinto E., Haraguchi M., Oliveira C.A., Bernardi M.M., Spinosa H.S., Phytochemical study of Solanum lycocarpum (St. Hil) unripe fruit and its effect on rat gestation, Phytother. Res. 21 (2007) 1025–1028. [CrossRef] [PubMed] [Google Scholar]
  25. Yoshikawa M., Nakamura S., Ozaki K., Kumahara A., Morikawa T.Matsuda H., Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogeneic constituents from the Brazilian medicinal plant Solanum lycocarpum, J. Nat. Prod. 70 (2007) 210–214. [CrossRef] [PubMed] [Google Scholar]
  26. Ono M., Uenosono Y., Umaoka H., Shiono Y., Ikeda T., Okawa M., Kinjo J., Yoshimitsu H., Nohara, T., Five new steroidal glycosides from the stems of Solanum sodomaeum, Chem. Pharm. Bull. 57 (2009) 759–763. [CrossRef] [Google Scholar]
  27. Cham B.E., Intralesion and curadermBEC5 topical combination therapies of solasodine rhamnosyl glycosides derived from the eggplant or devil’s apple result in rapid removal of large skin cancers. Methods of treatment compared, Int. J. Clin. Med. 3 (2012) 115–124. [CrossRef] [Google Scholar]