Free Access
Issue
Fruits
Volume 70, Number 6, November-December 2015
Page(s) 351 - 360
DOI https://doi.org/10.1051/fruits/2015036
Published online 30 October 2015
  1. FAO/WHO, Codex Alimentarius: Organically produced foods, 3 ed., 1999, 63 p. [Google Scholar]
  2. Bourn D., Prescott J.A., Comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods, Crit. Rev. Food Sci. Nutr. 42 (2002) 1–34. [CrossRef] [PubMed] [Google Scholar]
  3. Magkos F., Arvaniti F., Zampelas A., Organic food: Buying more safety or just peace of mind? A critical review of the literature, Crit. Rev. Food Sci. Nutr. 46 (2006) 23–56. [CrossRef] [PubMed] [Google Scholar]
  4. CSO(2013) (Centro Servizi Ortofrutticoli) Database. CSO http://www.csoservizi.com. [Google Scholar]
  5. Giampieri F., Tulipani S., Alvarez-Suarez J.M., Quiles J.L., Mezzetti B., Battino M., The strawberry: Composition, nutritional quality, and impact on human health, Nutrition 28 (2012) 9–19. [CrossRef] [PubMed] [Google Scholar]
  6. Sun J., Chu Y.F., Wu X., Liu R.H., Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50 (2002) 7449–7454. [CrossRef] [PubMed] [Google Scholar]
  7. Maas J.L., Galletta G.J., Stoner G.D., Ellagic acid, an anticarcinogen in fruits, especially in strawberries: A review, Hort. Sci. 26 (1991) 10–14. [Google Scholar]
  8. Conney A.H., Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The Seventh DeWitt S. Goodman Lecture. Cancer Res. 63 (2003) 7005–7031. [PubMed] [Google Scholar]
  9. Häkkinen S. H.; Törrönen A.R., Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique, Food Res. 33 (2000) 517–524. [CrossRef] [Google Scholar]
  10. Olsson M.E., Gustavsson K.G., Nilsson J., Ekvall J., Pillaua D., Sjöholm I., Svensson U., Åkesson B., Nyman M., Antioxidants, low molecular weight carbohydrates and total antioxidative capacity in strawberries (Fragaria × ananassa): Effects of cultivar, ripening, and storage, J. Agric. Food Chem. 52 (2004) 2490–2498. [CrossRef] [PubMed] [Google Scholar]
  11. Olsson M.E., Andersson C.S., Oredsson S., Berglund R.H., Gustavsson K., Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries, J. Agric. Food Chem. 54 (2006) 1248–1255. [CrossRef] [PubMed] [Google Scholar]
  12. Hargreaves J.C., Adl M., Warman P.R., Rupasinghe H.P.V., The effects of organic and conventional nutrient amendments on strawberry cultivation: Fruit yield and quality, J. Sci. Food Agric. 88 (2008) 2669–2675. [CrossRef] [Google Scholar]
  13. Jin P., Wang S.Y., Wang C.Y., Zheng Y.H., Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries, Food Chem. 124 (2011) 262−270. [CrossRef] [Google Scholar]
  14. Oszmiañski J., Wojdy1o A., Kolniak J., Effect of L-ascorbic acid, sugar, pectin and freeze–thaw treatment on polyphenol content of frozen strawberries, LWT - Food Sci. Technol. 42 (2009) 581–586. [CrossRef] [Google Scholar]
  15. Wicklund, T., Rosenfeld, H. J., Martinsen, B. K., Sundfor, M. W., Lea, P., Bruun, T., Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions, LWT- Food Sci. Technol. 38 (2005) 387–391. [CrossRef] [Google Scholar]
  16. Lindley M.G., The impact of food processing on antioxidants in vegetable oils, fruits and vegetables, Trends Food Sci. Technol. 9 (1998) 336–341. [CrossRef] [Google Scholar]
  17. Garrote R.L., Bertone R.A., Osmotic concentration at low temperature of frozen strawberry halves. Effect of glycerol, glucose and sucrose solutions on exudate loss during thawing, Lebensm. Wiss. Technol. 22 (1989) 264–267. [Google Scholar]
  18. Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91, Official Journal of the European Union L 198, 1–23. [Google Scholar]
  19. McGuire, R.G., Reporting of objective color measurements, HortScience 27 (1992) 1254–1255. [Google Scholar]
  20. Fogliano V., Verde V., Randazzo G., Ritieni A., Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines, J. Agric Food Chem. 47 (1999) 1035–1040. [CrossRef] [PubMed] [Google Scholar]
  21. Pellegrini N., Re R., Yang M. and Rice-Evans C., Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2–azinobis (3 ethylenebenzothiazoline-6- sulfonic acid radical cation decoloration assay, Methods. Enzymol. 299 (1999) 379–384. [CrossRef] [Google Scholar]
  22. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, J. Free Radic. Biol. Med. 26 (1999) 1231–1237. [CrossRef] [PubMed] [Google Scholar]
  23. Kampfenkel K., Montagu M.V., Inzè D., Extraction and determination of ascorbate and dehydroascorbate from plant tissue, Ann. Biochem. 225 (1995) 165–167. [CrossRef] [PubMed] [Google Scholar]
  24. Singleton V.L., Orthofer R., Lamuela-Raventos R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent, Meth. Enzymol. 299 (1999) 152–178. [CrossRef] [Google Scholar]
  25. Häkkinen S.H., K?renlampi S.O., Heinonen I.M., Mykk?nen H.M., Törrönen A.R., HPLC method for screening of flavonoids and phenolic acids in berries, J. Sci. Food Agric. 77 (1998) 543−551. [CrossRef] [Google Scholar]
  26. Matus I.M., Gonzales G., del Poso A., Evaluation of phenotypic variation in a Chilean collection of garlic (Allium sativum L.) clones using multivariate analysis, Plant Gen. Res. Newsl. 117 (1996) 31–36. [Google Scholar]
  27. Crecente-Campo J., Nunes-Damaceno M., Romero-Rodrìguez M.A., Vazquez-Oderiz M.L., Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva), J. Food Comp. Anal. 28 (2012) 23–30. [CrossRef] [Google Scholar]
  28. Hidaka S., Shimoda K., Investigation of the effects of color on judgments of sweetness using a taste adaptation method, Multisens. Res. 27 (2014) 189–205. [CrossRef] [PubMed] [Google Scholar]
  29. Koyuncu M.A., Quality Changes of three Strawberry Cultivars during the Cold Storage, Eur. J. Hortic. Sci. 69 (2004) 193–200. [Google Scholar]
  30. Abu-Zahra T.R., Tahboub A.A. Strawberry (Fragaria × ananassa Duch) fruit quality grown under different organic matter sources in a plastic house at Hum-rat Al-Sahen, Acta Hortic. 807 (2009) 353–358. [CrossRef] [Google Scholar]
  31. Baruzzi G., Faedi W., Lucchi P., Migani M., Sbrighi P., Turci P., Performance of Italian strawberry genotypes on fumigated, non-fumigated soils and organic culture, Acta Hortic. 842 (2009) 553–556. [CrossRef] [Google Scholar]
  32. Conti S., Villari G., Faugno S., Melchionna G., Somma S., Caruso G., Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy, Sci. Hortic. 180 (2014) 63–71. [CrossRef] [Google Scholar]
  33. Gaskell M., Fouche B., Koike S., Lanini T., Mitchell J., Smith R., Organic vegetable production in California-Science and practice, HortTechnology 10 (2000) 699–713. [Google Scholar]
  34. Reganold J.P., Andrews P.K., Reeve J.R., Carpenter-Boggs L., Schadt C.W., Alldredge J.R., Ross C.F., Davies N.M., Zhou J., Fruit and soil quality of organic and conventional strawberry ecosystems, PloS One 5 (2010) e12346. [CrossRef] [PubMed] [Google Scholar]
  35. Amarante C.V.T., Steffens C.A., Luiz Mafra A., Albuquerque J.A., Yield and fruit quality of apple from conventional and organic production system, Pesqui. Agropecu. Bras. 43 (2008) 333−340. [CrossRef] [Google Scholar]
  36. Pokhrel B., Laursen K.H., Petersen K.K., Yield, Quality, and nutrient concentrations of strawberry (Fragaria × ananassa Duch. cv.‘Sonata’) grown with different organic fertilizer strategies. J. Agric. Food Chem. 63 (2015) 5578–5586. [CrossRef] [PubMed] [Google Scholar]
  37. Miner G.S., Poling E.B., Carroll D.E., Nelson L.A., Campbell C.R., Influence of fall nitrogen and spring nitrogen potassium applications on yield and fruit quality of ‘Chandler’ strawberry, J. Am. Soc. Hortic. Sci. 122 (1997) 290−295. [Google Scholar]
  38. Rouphael Y., Schwarz D., Krumbein A., Colla G., Impact of grafting on product quality of fruit vegetables, Sci. Hortic. 127 (2010) 172–179. [CrossRef] [Google Scholar]
  39. Goulas V., Manganaris G.A., The effect of postharvest ripening on strawberry bioactive composition and antioxidant potential, J. Sci. Food Agric. 91 (2011) 1907–1914. [CrossRef] [PubMed] [Google Scholar]
  40. Klatt B.K., Holzschuh A., Westphal C., Clough Y., Smit I., Pawelzik E., Tscharntke T., Bee pollination improves crop quality shelf life and commercial value, Proc. R. Soc. B: Biol. Sci. (2014) 281. [Google Scholar]
  41. Given N.K., Venis M.A., Grierson D., Hormonal regulation of ripening in the strawberry, a non climacteric fruit, Planta 174 (1988) 402–406. [CrossRef] [PubMed] [Google Scholar]
  42. Koh T.H., Melton L.D., Ripening-related changes in cell wall polysaccharides of strawberry cortical and pith tissues, Postharvest Biol. Technol. 26 (2004) 23–33. [Google Scholar]
  43. Ali A., Abrar M., Sultan M.T., Din A., Niaz B., Post-harvest physiochemical changes in full ripe strawberries during cold storage, J. Anim. Plant Sci. 21 (2011) 38-41. [Google Scholar]
  44. Sartono B., Affendi F.M., Syahfitri U.D., Sumertajaya I.M., Anggraeni Y., Analysis Variable, Ganda Bogor, Indonesia: Statistics Dept. Bogor Agricultural University (2003). [Google Scholar]
  45. Bartolomé A.P., Rupérez P., Fúster C., Non-volatile organic acids, pH and titratable acidity changes in pineapple fruit slices during frozen storage, J. Sci. Food Agric. 70 (1996) 475–480. [CrossRef] [Google Scholar]
  46. Martínez-Navarrette N., Moraga G., Martínez-Monzó J., Botella F., Tirado N. Chiralt A., Mechanical and color changes associated to dehydrofreezing of strawberry, in Welti-Chanes J., Barbosa-Canvas G.V. and Aguilera J.M. (Eds.), Proceedings of the Eighth International Congress on Engineering and Food: ICEF-8, (2001), pp. 793–797, Technomic Publishing Company, Inc., Lancaster,PA. [Google Scholar]
  47. Abu-Zahra T.R., Al-Ismail K., Shatat F., Effect of organic and conventional systems on fruit quality of strawberry (Fragaria × ananassa Duch) grown under plastic house conditions in the Jordan valley, Acta Hortic. 741 (2006) 159–171. [Google Scholar]
  48. Cantliffe D.J., Castellanos J.Z., Paranjpe A.V., Yield and quality of greenhouse-grown strawberries as affected by nitrogen level in coco coir and pine mark media, Proc. Fla. St. Hortic. Soc. 120 (2007) 157−161. [Google Scholar]
  49. Khanam U.K.S., Oba S., Yanase E., Murakami Y., Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables, J. Func. Food 4 (2012) 979–987. [CrossRef] [Google Scholar]
  50. Scalzo J., Politi A., Pellegrini N., Mezzetti B., Battino M., Plant genotype affects total antioxidant capacity and phenolic contents in fruit, Nutrition 21 (2005) 207–13. [CrossRef] [PubMed] [Google Scholar]
  51. Halliwell B., Aeschbach R., Loliger J, Aruoma O.I., The characterization of antioxidants, Food Chem. Toxicol. 33 (1995) 601−617. [CrossRef] [PubMed] [Google Scholar]
  52. Perez A.G., Olias R., Olias J.M., Sanz C., Strawberry quality as a function of the “high pressure fast cooling” design, Food Chem. 62 (1998) 161–168. [CrossRef] [Google Scholar]
  53. Lisiewska Z., Kmiecik W., Effect of level of nitrogen fertilizer, processing conditions and period of storage for frozen broccoli and cauliflower on vitamin C retention, Food Chem. 57 (1996) 267–270. [CrossRef] [Google Scholar]
  54. Asami D.K., Hong Y., Barrett D.M., Mitchell A.E., Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marion berry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices, J. Agric. Food Chem. 51(2003) 1237–1241. [CrossRef] [PubMed] [Google Scholar]
  55. Hakala M., Lapveteläinen A., Huopalahti R., Kallio H., Tahvonen R., Effects of varieties and cultivation conditions on the composition of strawberries, J. Food Comp. Anal. 16 (2003) 67–80. [CrossRef] [Google Scholar]
  56. Cardoso P.C., Tomazini A.P.B., Stringheta P.C., Ribeiro S.M.R., Pinheiro-Sant’Ana H.M., Vitamin C and carotenoids in organic and conventional fruits grown in Brazil, Food Chem. 126 (2011) 411–416. [CrossRef] [Google Scholar]
  57. Vattem D.A., Shetty K., Biological functionality of ellagic acid: A review, J. Agric. Food Chem. 29 (2005) 234–266. [Google Scholar]
  58. de Ancos B., González E.M., Cano M.P., Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit, J. Agric. Food Chem. 48 (2000) 4565–4570. [CrossRef] [PubMed] [Google Scholar]
  59. Rommel A., Wrolstad R.E., Ellagic acid content of red raspberry juice as influenced by cultivars, processing, and enviromental factors, J. Agric. Food Chem. 41 (1993) 1951–1960. [CrossRef] [Google Scholar]
  60. Lawless H., Heymann H., Sensory evaluation of food: Principles and practices, New York, NY: Springer (2010). [Google Scholar]
  61. Finnegan E., O’Beirne D., Characterising and tracking deterioration patterns of fresh-cut fruit using principal component analysis – Part I, Posthavest Biol. Technol. 100 (2015) 73–80. [CrossRef] [Google Scholar]