Free Access
Review
Issue
Fruits
Volume 71, Number 6, November-December 2016
Page(s) 341 - 361
DOI https://doi.org/10.1051/fruits/2016027
Published online 21 October 2016
  1. Purseglove J.W., Tropical crops. Dicotyledons Vol. 1 and 2. Longmans, London, 1968, 346 and 381 p. [Google Scholar]
  2. Evans E.A., Ballen F.H., An Overview of Global Papaya Production, Trade, and Consumption, Food and Resource Economics Department, UF/IFAS Extension. Publication No. FE 913 (2015) 1–4. [Google Scholar]
  3. Samson J.A., Tropical fruits (2nd Ed.). Longman Scientific and Technical, New York, 1986. [Google Scholar]
  4. Nakasone H.Y., Paull, K.E., Tropical fruits. Crop production in horticulture, CAB International, 1998. [Google Scholar]
  5. Kader A.A., Fruit maturity, ripening and quality relationships, in: Michalczuk L. (Ed.), International Proceeding on Effect of Pre and Postharvest Factors on Storage of Fruits, Acta Hortic. 485 (1999) 203–208. [Google Scholar]
  6. USDA, National nutrient database for standard references, release 18, 2006, Available online: http://www.nal.usda.gov/fnic/foodcomp/search/ 2006 [Google Scholar]
  7. Harris P.J.C., Oke O.M., Olabiyi T.I., Aiyelaagbe, I.O.O., Postharvest quality of tropical fruit in Ogun State. Proceeding on organic fruit conference, in: Prange R.K., Bishop S.D. (Eds.), Acta Hortic. 873 (2010) 317–320. [CrossRef] [Google Scholar]
  8. Aiyelaagbe I.O.O., Fruits: Food for the birds? 39th Inaugural Lecture. Federal University of Agriculture, Abeokuta, Nigeria, 2013, p. 27. [Google Scholar]
  9. Aviloi I.V., Calcium and phosphorus, in: Shils M.E. and Young E. (Eds), Modern nutrition in health and disease, 7th Ed., Le and Febiger, Philadelphia, 1988, pp. 142–158. [Google Scholar]
  10. Hardisson A., Rubio C., Martin B.M.M., Alvarez R., Mineral composition of the pawpaw (Carica papaya var. Sunrise) from Tenerife island, Eur. Food Res. Technol. 212 (2001) 175–181. [CrossRef] [Google Scholar]
  11. Bhaskarachary K., Pawpaw carotenoid for combating vitamin A deficiency and age related macular degenerative diseases. in: Kumar N., Soorianathasundaram K., Jeyakumar, P. (Eds.), Proceedings of the 2nd International Symposium on Pawpaw. I. Acta Hortic. 851 (2010) 29–36. [Google Scholar]
  12. OECD (Organisation for Economic Co-operation and Development), Draft consensus document on the biology of Carica papaya (L.) (pawpaw). Report No. 5 February 2003, OECD, Paris France. [Google Scholar]
  13. Dutta P., Kundu S., Chatlerjee S., Effect of bio-fertilizers on Homestead fruit production of pawpaw cv. Ranchi, Acta Hortic. 851 (2010) 385–388. [CrossRef] [Google Scholar]
  14. TNAU, Tamil Nadu Agricultural University. Pawpaw, AgriTech Portal – Horticulture 2014, http://agritech.tnau.ac.in/horticulture/horti_TNAU_varieties_fc_pawpaw.html [Google Scholar]
  15. FAOSTAT, Crop Production 2012, http://faostat.fao.org/site/567/default.aspx{#}ancor [Google Scholar]
  16. FAO, Food and Agricultural Organization Statistical databases of Food and Agricultural Organization, United Kingdom 2016, www.faostat3.fao.org/browse/Q/QC/E accessed on 28/01/2016. [Google Scholar]
  17. Olubode O.O., Productivity of pawpaw/vegetable intercrop supplied with organo-mineral fertilizer. Ph.D. Thesis, Department of Horticulture, Federal University of Agriculture, Abeokuta, Nigeria 2010. [Google Scholar]
  18. Madrigal L.S., Ortiz A.N., Cooke R.D., Fernandez R.H., The dependence of crude papain yields on different collection (‘tapping’) procedures for papaya latex. J. Sci. Food Agric. 31 (1980) 279–285. [Google Scholar]
  19. Marin S.L.D., Gomes J.A., Sexagon do mamoeiro e sua aplicacilo no desbaste de plantas. Empresa Capixaba de Pesquisa, Circular Tecnica. No. 11 (1987) 186. [Google Scholar]
  20. Jones J.G., Mercier P.L., Refined papain, Process Biochem. 9 (1976) 21–24. [Google Scholar]
  21. Dunne J., Horgan L., Meat tenderizers, in: Hui Y.H. (Ed.), Encyclopedia of food and science and technology, Vol. 3, Wiley, New York, 1992, pp. 1745–1751. [Google Scholar]
  22. Monti R., Basilio C.A., Trevisan H.C., Contiero J., Purification of Papain from Fresh Latex of Carica papaya. Braz. Arch. Bio. Tech. 43 (2000) 501–507. [CrossRef] [Google Scholar]
  23. Kader A.A., Post-harvest biology and technology: An overview, in: Kader A.A., (Ed.), Post-harvest technology of horticultural crops. Division of Agriculture and Natural Resources, University of California, Berkeley, 1992, pp. 1–7. [Google Scholar]
  24. Langenheim JH. 2003. Plant Resins, Portland, OR: Timber Press, pp. 1223–1280. [Google Scholar]
  25. Agrawal A.A., Konno K., Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory, Ann. Rev. Ecol. Evol. Syst. 40 (2009) 311–331. [CrossRef] [Google Scholar]
  26. Upadhyay R.K., Antimicrobial activity of fruit latexes from ten laticiferous plants. Am. J. Plant Sci. 6 (2015) 483–499. [CrossRef] [Google Scholar]
  27. Macalood J.S., Vicente H.J., Boniao R.D., Gorospe J.G., Roa E.C., Chemical Analysis of Carica papaya L. Crude Latex, Am. J. Plant Sci. 4 (2013) 1941–1948. [CrossRef] [Google Scholar]
  28. Salunkhe D.K., Kadam S.S., Handbook of fruit science and technology: production, composition, storage, and processing, food science and technology. CRC Press, 1995, https://books.google.com/books?isbn=0824796438 [Google Scholar]
  29. Hui Y.H. Handbook of fruits and fruit processing. John Wiley & Sons, 2008, https://books.google.com/books?isbn=0470276487 [Google Scholar]
  30. Shanmugavelu K.G., Chittiraichelum V.N., Rao M., Effect of ethephon on latex stimulation in papaya, J. Hort. Sci. 51 (1976) 425. [Google Scholar]
  31. Chovatia R.S., Varu D.K., Delvadia D.V., Barad A.V., Effect of different varieties and age of fruits on papain production in papaya, Acta Hortic. 851 (2010) 337–342. [CrossRef] [Google Scholar]
  32. Gadgil S., Rao P.R.S., Rao K.N., Use of climate information for farm-level decision making: rainfed groundnut in southern India, Agricultural Systems 74 (3) (2002) 431–457. [CrossRef] [Google Scholar]
  33. Hamrick J.L., Response of forest trees to global environmental changes, Forest Ecology and Management 197 (2004) 323–335. [CrossRef] [Google Scholar]
  34. Botkin D.B., Saxe H., Arau’o M.B., Betts R., Bradshaw R.H.W., Cedhagen T., Chesson P., Dawson T.P., Etterson J.R., Faith D.P., Ferier S., Guisan A., Skjoldborg H.A., Hilbert D.W., Loehle C., Margules C., New M., Sobel M.J., Stockwell D.R.B., Forecasting the effects of global warming on biodiversity, BioScience 57 (2007) 227–236. [CrossRef] [Google Scholar]
  35. Kremer A., How well can existing forests withstand climate change? in: Koskela J., Buck A., Teissier du Cros E. (Eds.), Climate change and forest genetic diversity: Implications for sustainable forest management in Europe, Bioversity International, Rome, Italy, 2007, pp. 3–17. [Google Scholar]
  36. Khangoli S., Potential of growth regulators on control of size and flowering of ornamental plants. Proc. First Applied Sci. Seminar on Flowering and Ornamental Plants. Mahallat, Iran, 2001, pp. 75–76. [Google Scholar]
  37. Olubode O.O., Aiyelaagbe I.O.O., Bodunde J.G., Olasantan F.O., Growth and yield of pawpaw varieties (Carica papaya L.) intercropped with okra and cucumber, Nig. J. Hort. Sci. 13 (2008) 25–34. [Google Scholar]
  38. FAO, Statistical databases of the Food and Agricultural Organisation of the United Nations [Internet]. Rome (Italy): FAO 2007, Available from: http://www.fao.org [Google Scholar]
  39. Singh D.B., Roshan R.K., Pebam N., Effect of different spacings on growth, yield and yield characteristics of pawpaw (Carica papaya L.) cv. Coorg Honer Dew, Acta Hortic. 851 (2010) 44. 10.17660 / Acta Hortic. 851 (2010) 44. [Google Scholar]
  40. Adeyemi S.O.A., Keynote address at 9th Annual Conference of the Horticultural Society of Nigeria (HORTSON), Federal University of Technology, Owerri, Nigeria 8-13th November, 1987, pp. 1–3. [Google Scholar]
  41. Aiyelaagbe I.O.O., The response of Homestead selection pawpaw (Carica papaya L.) to soil moisture stress. Ph.D. Thesis, Department of Agronomy, University of Ibadan, Ibadan, Nigeria, 1988, pp. 77–125. [Google Scholar]
  42. Connolly J., Goma H.C., Rahim K., The information content of indicators in intercropping research, Agric., Ecosyst. Environ. 87 (2001) 191–207. [CrossRef] [Google Scholar]
  43. Allan P., Pawpaw grown from cuttings – are more true to type – bear earlier – lower and longer, Farming in South Africa 101 (1964) 1–6. [Google Scholar]
  44. Griesbach J., A guide to propagation and cultivation of fruit-trees in Kenya, Technical Cooperation Federal Republic of Germany (GTZ), Eschborn, 1992, pp. 91–97. [Google Scholar]
  45. Asudi G.O., Ombwara F.K., Rimberia F.K., Nyende A.B., Ateka E.M., Wamocho L.S., Shitanda D., Onyango A., Morphological diversity of Kenyan pawpaw germplasm, Afr. J. Biotech. 9 (2010) 8754–8762. [Google Scholar]
  46. Weising K., Nybom H., Wolff K., Kahl G., DNA fingerprinting in plants: principles, methods, and applications, 2nd Ed., CRC Press, London, 2005. [Google Scholar]
  47. Tokuhisa D., Dias D.C.F.S., Alvarenga E.M., Dias L.S.A., Marin S.L.D., Tratamentos para superacao da dormencia em sementes de mamao, Revista Brasileira de Sementes 29 (2007) 131–139. [CrossRef] [Google Scholar]
  48. Martins G.N., Silva R.F., Pereira M.G., Araujo E.F., Posse, S.C.P., Influencia do repouso pos-colheita de frutos na qualidade fisiologica de sementes de mamao, Revista Brasileira de Sementes 28 (2006) 142–146. [CrossRef] [Google Scholar]
  49. Tokuhisa D., Dias D.C.F.S., Alvarenga E.M., Hilst P.C., Demuner A.J., Compostos fenolicos inibidores da germinacao em sementes de mamao (Carica papaya L.), Revista Brasileira de Sementes 29 (2007) 161–168. [Google Scholar]
  50. Nagao MA., Furutani S.C., Improving germination of pawpaw seed by density separation, potassium nitrate, and gibberellic acid, HortScience 21 (1986) 1439–1440. [Google Scholar]
  51. Dias M.A., Dias D.C.F.S., Gomes F.G. Jr., Cícero S.M., Morphological changes and quality of pawpaw seeds as correlated to their location within the fruit and ripening stages, IDESIA (Chile) Enero-Febrero 32 (2014) 27–34. [CrossRef] [Google Scholar]
  52. Siqueira D.L. de, Botrel, N., Clima e Solo para a cultura do mamoeiro, Informe Agropecuario 134 (1986) 8–9. [Google Scholar]
  53. Medina J.C., Cultura. In: Instituto de Technologia de Alimentos, Mamao, 2nd Ed., Campinas: Ital. (Series Frutas Tropicais, 7), 1989, pp. 1–178. [Google Scholar]
  54. Oliveira A.M.G., Farias A.R.N., Santos F.H.P., Oliveira J.R.P., Dantas J.L.L., Santos L.B. dos, Oliveira M. de A., Silva M.J., Almeida O.A. de, Nickel O., Medina V.M., Cordeiro Z.J.M., Mamao para exportacao: aspectos tecnicos de producao. Brasilia: EMBRAPA, SPI, (Serie Publicacos Tecnicas FRUPEX, 9), 1994, 52 p. [Google Scholar]
  55. Atwell B., Kriedemann P. Turnbull C. (Eds.), Plant in action: Adaptation in nature, performance in cultivation, Australian Society of Plant Physiologists, The New Zealand Society of Plant Physiologists and The New Zealand Society of Horticultural Science, McMillan Publishers Australia PTY, Ltd, 1999, 650 p. [Google Scholar]
  56. Marin S.L.D., Gomes J.A., Salgado J.S., Martins D.S., Fullin E.A., Recommendations for pawpaw cultivation of the groups Solo and Formosa in the State of Espirito Santo (Recomendações para a cultura do mamoeiro dos grupos Solo e Formosa no Estado do Espírito Santo), 4th Ed. Vitória: EMCAPA, Circular Técnica, 3, 1995, 57 p. [Google Scholar]
  57. Almeida, F.T., Bernardo, S., Sousa, E.F., Marin, S.L.D., Growth and yield of pawpaw under irrigation. Sci. Agric. (Piracicaba, Braz.) 60 (2003) 419–424. [Google Scholar]
  58. Asoegwu S.N., Obiefuna J.C., The effect of frequency and volume of water application on growth and yield of container grown pineapples. Paper presented at the 7th Ann. Conf. HORTSON, ASCON, Lagos. 4-7th August, 1985, 7 p. [Google Scholar]
  59. Oseni T.O. Soil-plant-water and rootstock relationships in the culture of citrus seedlings. Ph.D Thesis, Univ. Ibadan, Ibadan, 1984, 101 p. [Google Scholar]
  60. Maurya P.R., Wheat yield in relation to irrigation in Northern Nigeria. Niger. J. Agron. 1 (1986) 79–82. [Google Scholar]
  61. Aiyelaagbe I.O.O., Fawusi M.O.A., Growth response of Homestead selection pawpaw (Carica papaya L.) seedlings to soil moisture stress. In: Adebanjo A., Adedoyin S.F., Alabi D.A. (Eds.), Proc. 14th Annual conf. Horticultural society of Nigeria (HORTSON) 1-4 April, 1996, Ogun State University, Ago-Iwoye, Nigeria, pp. 127–130. [Google Scholar]
  62. Aiyelaagbe I.O.O., Fawusi M.O.A., Effects of irrigation on the performance of a pawpaw – okra mixture, in: Samaru A.B.U., Ramalan A.A. (Eds.), Proc. 12th National irrigation and Drainage Seminar, 14-15 April, 1998, Institute for Agricultural Research, Zaria, Nigeria, 2000, pp. 117–122. [Google Scholar]
  63. Aiyelaagbe I.O.O., Fawusi M.O.A., Effects of soil moisture stress on germination of Homestead selection pawpaw seeds, Biotronics 17 (1988) 41–47. [Google Scholar]
  64. Aiyelaagbe I.O.O., Fawusi M.O.A., Babalola O., Growth, development and yield of pawpaw in response to soil moisture stress, Plant and Soil 93 (1986) 427–435. [CrossRef] [Google Scholar]
  65. Rice R.P., Rice L.W., Tindall H.D., Fruit and vegetable production in Africa. London (UK), Macmillan, 1987. [Google Scholar]
  66. Kira T, Ogawa H, Shinozaki K. Intraspecific competition among higher plants. I. Competition-yield density interrelationships in regularly dispersed populations, J. Inst. Polytech. Osaka City. Univ. D 4 (1953) 1–16. [Google Scholar]
  67. Loomis R.S., Connor D.J., Crop ecology: productivity and management in agricultural systems, Cambridge University Press, England, 1992. [Google Scholar]
  68. Kikuzawa K., Theoretical relationships between mean plant size, size distribution and self-thinning under one-sided competition, Ann. Bot. 83 (1999) 11–18. [CrossRef] [Google Scholar]
  69. Zobel R.W., Soil environment constraints to root growth, in: Harfield J.L., Stewart B.A. (Eds.), Advances in Soil Science. Vol. 19. Springer-Verlag, New York, 1992, pp. 27–51. [Google Scholar]
  70. Marler T.E., Discekici H.M., Root development of “Red Lady” pawpaw plants grown on a hillside, Plant and Soil 195, 37–42. Marschner Horst, (1986) Mineral nutrition in higher plants. Academic press Ltd, London, 1997, pp. 158–161. [Google Scholar]
  71. Olubode O.O., Ogunleye M.T., Malik B.O., Comparative evaluation of morphological growth responses of seedling stage pawpaw varieties to applied fertilizer types and rates. Proceedings 32nd Annual Conference of Horticultural Society of Nigeria (HORTSON) to be held at the Federal University of Agriculture, Abeokuta, Nigeria on October 19-23, 2014, pp. 83–88. [Google Scholar]
  72. Veerannah L., Selvaraj P., Studies on growth, dry matter portioning and the pattern of nutrient uptake in pawpaw. Proceedings National Seminar on Pawpaw and Papain Production, TNAU, Coimbatore, 1984. [Google Scholar]
  73. Yadav P.K., Yadav A.L., Yadav A.S., Yadav H.C., Effect of integrated nutrient nourishment on vegetative growth and physico-chemical attributes of pawpaw (Carica papaya L.) fruit cv. Pusa dwarf, Plant Archieves 1 (2011) 327–329. [Google Scholar]
  74. Adelaja B.A., Olaniyan A.A., Production of ten most important fruits in Nigeria, in: Akoroda M.O. (Ed.), Agronomy in Nigeria, Published by University Press, Ibadan, 2000, 17 p. [Google Scholar]
  75. Jayaprakash R., Bojappa K.M., Seenappa K., Ramanjini P.H., The Effect of irrigation and fertilization on yield and quality of ‘Sunrise Solo’ (Carica papaya L.). CAB Abstr. 4 (1993): Abstract No. 95, Progressive Horticulture 21 (3-4) (1992) 239–243. [Google Scholar]
  76. Srinivas K., Prabhakar M., Plant water relation, yield and water use efficiency of pawpaw in relation to irrigation and nitrogen fertilization, Singapore J. Primary Industries 2 (1993) 1–5. [Google Scholar]
  77. Kumar N., Soorianathasundaram K., Meenakshi M., Manivannan J., Suresh J., Noscov V., Balanced fertilization in pawpaw (Carica papaya L.) for higher yield and quality, Acta Hortic. 851 (2010) 357–362. [CrossRef] [Google Scholar]
  78. Hornick S.B., Factors affecting the nutritional quality of crops. Amer. J. Alternative Agric. 7 (1992) 63–68. [CrossRef] [Google Scholar]
  79. FAO, Current world fertilizer trends and outlook to 2011/12, FAO, Rome, 2008. [Google Scholar]
  80. FAO, World fertilizer trends and outlook to 2018, Food And Agriculture Organization Of The United Nations - Rome, 2015, www.fao.org/3/a-i4324e.pdf accessed on 02/05/2016. [Google Scholar]
  81. Adedokun S.A., Aiyelaagbe I.O.O., Growth and reproductive development of field grown cucumber to compost. Proceeding of the 1st West Africa Summit and 4th National Conference on Organic Agriculture. 17-21 November 2008, Federal University of Agriculture, Abeokuta, 2008, pp. 184–187. [Google Scholar]
  82. NISER, Nigerian Institute of Social and Economic Research, Understanding poverty in Nigeria, College Press and Publishers Limited, Ibadan, Nigeria, 2003, 441 p. [Google Scholar]
  83. Badgley C., Moghtader J., Quintero E., Zakem E., Chappell, M.J., Aviles-Vazquez, K., Samulon A., Perfecto I., Organic agriculture and the global food supply, Ren. Agric. Food Syst. 22 (2007) 86–108. [CrossRef] [Google Scholar]
  84. USDA-NOP., United States Department of Agriculture, National Organic Program, Available at: http://www.ams.usda.gov/AMSv1.0/NOP, 2009. [Google Scholar]
  85. Vandermeer J., Lawrence D., Symstad A., Hobbie S., Effects of biodiversity on ecosystem functioning in managed ecosystems, in: Loreau M., Naeem S., Inchausti P. (Eds.), Biodiversity and ecosystem functioning: synthesis and perspectives, Oxford University Press, Oxford, 2002, pp. 157–168. [Google Scholar]
  86. Kremen C., Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8 (2005) 468–479. [CrossRef] [PubMed] [Google Scholar]
  87. Jackson L.E., Pascual U., Hodgkin T., Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 121 (2007) 196–210. [CrossRef] [Google Scholar]
  88. Lu H.J., Ye Z.Q., Zhang X.L., Lin X.Y., Ni W.Z., Growth and yield responses of crops and macronutrient balance influenced by commercial organic manure used as a partial substitute for chemical fertilizers in an intensive vegetable cropping system, Physics Chemistry of the Earth 36 (2011) 387–394. [CrossRef] [Google Scholar]
  89. Eifediyi E.K., Remison S.U., Growth and yield of cucumber (Cucumis sativum L.) as influenced by farm yard manure and inorganic fertilizer, Journal of Plant Breeding and Crop Science 2(7) (2010) 216–220. [Google Scholar]
  90. Ojeniyi S.O., Effect of goat manure on soil nutrients and okra yield in a rain forest area of Nigeria, Applied Tropical Agric. 5 (2000) 20–23. [Google Scholar]
  91. Gambo B.A., Magaji M.D., Yakubu A.I., Dikko A.U., Effects of farm yard manure and weed interference on the growth and yield of onion (Allium cepa L.), J. Sustain. Agric. Environ. 3 (2008) 87–92. [Google Scholar]
  92. Aruleba J.O., Fasina A.S., Soil degradation and vegetable production in South Western Nigeria, in: Proc. of the 22nd Annual conference of HORTSON, Kano, 2004, pp. 134–137. [Google Scholar]
  93. Olubode O.O., Fawusi M.O.A., Effect of organic manure on growth and yield of pawpaw (Carica papaya L.), Nig. J. Hort. Sci. 3 (1998) 80–87. [Google Scholar]
  94. Trewavas A., Malthus foiled again and again, Nature 418 (2002) 668–670. [CrossRef] [PubMed] [Google Scholar]
  95. Green R.E., Cornell S.J., Scharlemann J.P.W., Balmford A., Farming and the fate of wild nature, Science 307 (2004) 550–555. [CrossRef] [PubMed] [Google Scholar]
  96. Weibel F.P., Daniel C., Tamm L., Willer H., Schwartau H., Development of organic fruit in Europe, in: Granatstein D. et al. (Eds.), Proc. IInd International Organic Fruit Symposium, Acta Hortic. 1001 (2013) 19–34. [CrossRef] [Google Scholar]
  97. Addiscott T.M., Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories, Eur. J. Soils Su. 34 (1983) 343–353. [Google Scholar]
  98. Broadbent F.E., Effects of organic matter on nitrogen and phosphorus supply to plants, in: Chen Y., Avnimelech Y. (Eds.), The role of organic matter in modern agriculture. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1986, pp. 13–23. [Google Scholar]
  99. Kanal A., Effect of incorporation depth and soil climate on straw decomposition rate in loamy podzoluvisol, Biol. Fertil. Soils 20 (1995) 190–196. [CrossRef] [Google Scholar]
  100. Mitchell R.D.J., Harrison R., Russell K.J., Wess J., The effect of crop residue incorporation date on soil inorganic nitrogen, nitrate leaching and nitrogen mineralization, Biol. Fertil. Soils 32 (2000) 294–301. [CrossRef] [Google Scholar]
  101. Brandt K., Molgaard P., Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric. 81 (2001) 924–931. [CrossRef] [Google Scholar]
  102. Olubode O.O., Aiyelaagbe I.O.O., Bodunde J.G., Influence of OMF application rates on post field soil fertility status under pawpaw (Carica papaya L.) varieties, Proceedings 81st of the Annual Conference of the World Academy of Science, Engineering and Technology (WASET) held at Riverview Hotel, Singapore, 12th–13th September 2013, pp. 511–517. [Google Scholar]
  103. Babu R.C., Mohandass S., Veerannah L., Nagarajan M., Leaf area in relation to petiole length in pawpaw, South Indian, Horticulture 37 (1989) 48–49. [Google Scholar]
  104. Aiyelaagbe I.O.O., Fawusi M.O.A., Estimation of the area of detached or intact leaves of pawpaw, Ind. J. Agric. Sci. 58 (1984) 322. [Google Scholar]
  105. Reddy Y.T.N., Bhargava B.S., Kohli R.R., Selection of pawpaw tissue for nutritional diagnosis, Indian J. Hortic. 45 (1988) 18–22. [Google Scholar]
  106. Balakrishan K., Sundaram K.M., Natarajaratnam N., Rajendram C., Prediction of dry matter accumulation through non-destructive methods in pawpaw (Carica papaya) Ind. J. Agric. Sci. 58 (1988) 74–75. [Google Scholar]
  107. Ghanta P.K., Dhua R.S., Mitra S.K., Effect of varying levels of nitrogen, phosphorus and potassium on growth, yield and quality of pawpaw (Carica papaya L.), Ann. Agric. Res. 16 (1995) 405–408. [Google Scholar]
  108. Sanyel D., Ghanta P., Raitra S.K., Sampling for mineral content in leaf and petiole of pawpaw cvs Washington and Puga Delicious, Ind. J. Hortic. 47 (1990) 318–322. [Google Scholar]
  109. Bodunde J.G., Yield and yield related characters of tomato plants as indices of irrigation efficiency in conventional ridge side and basin plant-placement under high environmental temperature, Samaru J . Agric. Educ. 6 (1999) 95–106. [Google Scholar]
  110. Kuthe G., Spoerhase H., Cultivation and use of pawpaw (Carica papaya L.), Tropen Land Writ. 75 (1974) 129–139. [Google Scholar]
  111. NIHORT, National Horticultural Research Institute - Advances in Fruit and Vegetable Research at NIHORT (1976-1986), NIHORT Press, Ibadan, 1986, p. 37. [Google Scholar]
  112. Storey W.B., Pawpaw, in: Ferwerda F.P., Wit F. (Eds.), Outlines of perennial crop breeding in the tropics. Misc. papers. Landbouwhope Schl. Wagenigen, The Netherlands, Pub. Veenman and Zonen, Wageningen, 1969, pp. 389-407. [Google Scholar]
  113. Dickson R.E., Assimilate distribution and storage, in: Raghavendra A.S. (Ed.), Physiology of trees, John Wiley & Sons, Inc., New York, 1991, pp. 51–85. [Google Scholar]
  114. Obeso J.R., The costs of reproduction in plants, New Phytol. 155 (2002) 321–348. [CrossRef] [Google Scholar]
  115. Marchin R.M., Population variation in Fraxinus americana L. (white ash) in a common garden at the edge of the species range, Department of Ecology and Evolutionary Biology, University of Kansas, May 2006. [Google Scholar]
  116. Ajiboye A.G., Sex prediction techniques in pawpaw (Carica papaya L.) seedlings using morphological, chemical and biochemical methods. M. Agric, in: Horticulture, Federal University of Agriculture, Abeokuta, Nigeria, 2015. [Google Scholar]
  117. Meagher T.R., Sex determination in plants, in: Doust J.L., Doust L.L. (Eds.), Plant Reproductive Ecology: Patterns and Strategies, Oxford University Press, New York. 1988, pp. 125–138. [Google Scholar]
  118. Davenport T.L., Citrus flowering, Hort. Rev. 12 (1990) 349–408 [Google Scholar]
  119. Albrigo L.G., Sauco V.G., Flower bud induction, flowering and fruit-set of some tropical and subtropical fruit tree crops with special reference to Citrus, Acta Hort. 632 (2004) 81–90. [CrossRef] [Google Scholar]
  120. Korpelainen H., Labile sex expression in plants, Biol. Rev. 73 (1998) 157–180. [CrossRef] [Google Scholar]
  121. Jaiswal V.S., Kumar A., Lal M., Role of endogenous phytohormones and some macromolecules in regulation of sex differentiation in flowering plants, Plant Sci. 95 (1985) 453–459. [Google Scholar]
  122. Yon, R.M., Pawpaw: Fruit development, postharvest physiology, handling and marketing. In: ASEAN, Food Technology Research Center, Malaysian Agricultural Research and Development, ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia, 1994, 144 p. [Google Scholar]
  123. Blackman F.F., Optima and limiting factors, Ann. Bot. 14 (1905) 281. [Google Scholar]
  124. Hall A.E., Physiological ecology of crops in relation to light, water and temperature, in: Carroll R.C., Vandermeer J.A., Rosset P. (Eds.), Agroecology, McGraw-Hill Publishing co. New York, 1990, pp. 191–223. [Google Scholar]
  125. Von Caemmerer S., Farquhar G.D., Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p(CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L., Planta 160 (1984) 320–329. [CrossRef] [PubMed] [Google Scholar]
  126. Aiyelaagbe I.O.O., Fruit crops in cashew – coconut system of Kenya: Their management and agroforestry potential, Agrofore. Syst. 27 (1994) 1–16. [CrossRef] [Google Scholar]
  127. Parasnis A.S., Gupta V.S., Tamhankar S.A., Ranjekar P.K., A highly reliable sex diagnostic PCR assay for mass screening of pawpaw seedlings, Mol. Breed. 6 (2000) 337–344. [CrossRef] [Google Scholar]
  128. Chan T.C., Yen C.R., Chang L.S., Hsiao C.H., Ko T.S., All hermaphrodite progeny are derived by self-pollinating the sunrise pawpaw mutant, Plant Breed. 122 (2003) 431–434. [CrossRef] [Google Scholar]
  129. Hsu T.H., Gwo J.C., Lin K.H., Rapid sex identification of papaya (Carica papaya) using multiplex loop-mediated isothermal amplification (mLAMP), Planta (Springer-Verlag), 2012. [Google Scholar]
  130. Olubode O.O., Sex identification techniques in pawpaw varieties. Proceedings of 44th Annual Conference of Agric. Society of Nigeria (ASN) held at LAUTECH, Ogbomosho, Nigeria October 18-22, 2012, pp. 1033–1037. [Google Scholar]
  131. Collard B.C.Y., Mackill D.J., Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, Phil. Trans. R. Soc. B 363 (2008) 557–572. [CrossRef] [Google Scholar]
  132. Deputy J.C., Ming R., Ma H., Liu Z., Fitch M.M., Wang M., Manshardt R., Stiles J.I., Molecular markers for sex determination in papaya (Carica papaya L.), Theor. Appl. Genet. 106 (2002) 107–111. [CrossRef] [PubMed] [Google Scholar]
  133. Urasaki N., Tokumoto M., Tarora K., Ban Y., Kayano T., Tanaka H., Oku H., Chinen I., Terauchi R., A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.), Theor. Appl. Genet. 104 (2002) 281–285. [CrossRef] [PubMed] [Google Scholar]
  134. Sobir S.S., Pandia E.C., Development of SCAR marker for detection of sex expression in papaya (Carica papaya L.) from several genetic backgrounds, Bul. Agron. 36 (2008) 236–240. [Google Scholar]
  135. Matsumoto T.K., Zee F.T.P., Suzuki J.Y., Tripathi S., Carr J., Mackey B., Determining sex and screening for the adventitious presence of transgenic material in Carica papaya L. seed germplasm, HortScience 45 (2010) 161–164. [Google Scholar]
  136. Rigano L.A., Marano M.R., Castagnaro A.P., Do Amaral A.M., Vojnov A.A., Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods, BMC Microbiol. 10 (2010) 176. [CrossRef] [PubMed] [Google Scholar]
  137. Darwish O.H., Persaud N., Martens D.C., Effect of long-term application of animal manure on physical properties of three soils, Plant Soils 178 (1995) 289–295. [CrossRef] [Google Scholar]
  138. Hati K.M., Mandal K.G., Mistra A.K., Ghosh P.K., Bandyopadhyay K.K., Effect of inorganic fertilizer and farm yard manure on soil physical properties, root distribution, and water use efficiency of soybean in Vertisols of Central India, Bio-resource Technol. 97 (2006) 2182–2188. [CrossRef] [Google Scholar]
  139. Bhagat R.M., Verma T.S., Impact of rice straw management on soil physical properties and wheat yield, Soil Sci. 152 (1991) 108–115. [CrossRef] [Google Scholar]
  140. Acharya C.I.Bisnoi S.K., Yaduvanshi H.S., Effect of long-term application of fertilizer and organic and inorganic amendments under continuous cropping on physical and chemical properties in an Alfisol, Ind. J. Agric. Sci. 58 (1988) 509–516. [Google Scholar]
  141. Khaleel R., Reddy K.R., Overcash M.R., Changes in soil physical properties due to organic waste application a review, J. Environ. Quality 10 (1981) 133–141. [CrossRef] [Google Scholar]
  142. Avnimelech Y., Organic residues in modern agriculture, in: Chen Y., Avnimelech Y. (Eds.), The role of organic matter in modern agriculture, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1986, pp. 1–10. [Google Scholar]
  143. Dipeolu A.O., Phillip B.B., Aiyelaagbe I.O.O., Akinbode S.O., Adedokun T.A., Consumer awareness and willingness to pay for organic vegetables in southwestern Nigeria, Asian Journal of Food and Agro-Industry 2 (2009) 257–265. [Google Scholar]
  144. Zougmore R, Mando A., Stroosnijder L., Effect of soil and water conservation and nutrient management on soil-plant water balance in semi-arid Burkina Faso, Agric. Water Manag. 65 (2004) 103–120. [CrossRef] [Google Scholar]
  145. Ofori F., Stern W.R., Maize/cowpea intercrop system: Effect of nitrogen fertilizer on productivity and efficiency, Field Crops Res. 14 (1986) 247–261. [CrossRef] [Google Scholar]
  146. Altieri M.A., Agro-ecology – The scientific basis of alternate agriculture, Westview Press, (Boulders) CO, USA, 1987, p. 179. [Google Scholar]
  147. Aiyelaagbe I.O.O., Jolaoso M.A., Growth and yield response of pawpaw to intercropping with vegetable crops in South Western Nigeria, Agrofor. Syst. 19 (1992) 1–14. [CrossRef] [Google Scholar]
  148. Olasantan F.O., Optimum plant populations for okra (Abelmoschus esculentus Moench) in a mixture with cassava (Manihot esculenta) and its relevance to rainy season-based cropping systems in South–Western Nigeria, J. Agric. Sci. 66 Camb. 136 (2001) 207–214. [CrossRef] [Google Scholar]
  149. Zhang F., L. Li L., Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency, Plant Soil 248 (2003) 305–312. [CrossRef] [Google Scholar]
  150. Szumigalski A., Acker R.V., Weed suppression and crop production in annual intercrops, Weed Sci. 53 (2005) 813–825. [CrossRef] [Google Scholar]
  151. Ofosu-Anim J., Limbani N.V., Effect of intercropping on the growth and yield of cucumber (Cucumis sativus L.) and okra (Abelmoschus esculentus (L.) Moench), Int. J. Agric. Biol. 9 (2007) 594–597. [Google Scholar]
  152. Fukai S., Intercropping—bases of productivity, Field Crops Res. 14 (1993) 239–245. [CrossRef] [Google Scholar]
  153. May F.E., Ash J.E., An assessment of the allelopathic potential of eucalyptus, Aust. J. Bot. 38 (1990) 245–254. [CrossRef] [Google Scholar]
  154. Breener A.J., van den Beldt R.J., Jarvas P.G., Tree-crop interface competition in a semi-arid sahelian windbreak, in: Proceedings of 4th International Symposium on Windbreaks and Agroforestry, 1993 Jul 26–30, Hedeselskabet (Denmark), 1993, pp. 15–23. [Google Scholar]
  155. Lisanework N., Michelson A., Allelopathy in agroforestry systems: Effects of leaf extracts of Cupressus lusitanica and three Eucalyptus spp. on four Ethiopian crops, Agrofor. Syst. 21 (1993) 63–74. [CrossRef] [Google Scholar]
  156. Onyewotu S.R., Ogigirigi M.A., Stigter C.J., A study of the competitive effects 426 between a Eucalyptus camaldulensis shelterbelt and an adjacent millet (Pennisetum typhoides) crop, Agric. Ecosyt. Environ. 51 (1994) 281–286. [CrossRef] [Google Scholar]
  157. Kowalchuk T.E., Jong E., Shelterbelts and their effects on crop yield, Can. J. Soil Sci. 75 (1995) 543–550. [CrossRef] [Google Scholar]
  158. Agboola A.A., Farming system in Nigeria. In: Akoroda MOA, editor. Agronomy in Nigeria. Ibadan (Nigeria): University of Ibadan, 2000, pp. 24–34. [Google Scholar]
  159. Midmore D.J., Agronomic modification of resource use and intercrop productivity, Field Crops Res. 34 (1993) 357–380. [CrossRef] [Google Scholar]
  160. Olubode O.O., Aiyelaagbe I.O.O., Bodunde J.G., Effect of stage of introduction on performance of okra as an intercrop in pawpaw orchards, Biological Agriculture Horticulture 28 (2012) 61–70. [CrossRef] [Google Scholar]
  161. Monsi M., Saeki T., Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn. J. Bot. 14 (1953) 22–52. [Google Scholar]
  162. Idso S.B., de Wit C.T., Light relations in plant canopies, Appl. Opt. 9 (1970) 177–184. [CrossRef] [PubMed] [Google Scholar]
  163. Vancea, R.R., Nevai A.L., Plant population growth and competition in a light gradient: A mathematical model of canopy partitioning, J. Theor. Biol. 245 (2007) 210–219. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  164. Marschner Horst, Mineral nutrition in higher plants, Academic press Ltd, London, 1986, pp. 158, 161. [Google Scholar]
  165. Correia, PJ., Martins-Loucao M.A., Effect of nitrogen and potassium fertilization on vegetative growth and flowering of mature carob trees (Ceratonia siliqua): variations in leaf area index and water use indices, Aust. J. Exp. Agric. 44 (2004) 83–89. [CrossRef] [MathSciNet] [Google Scholar]
  166. Olubode O.O., Aiyelaagbe I.O.O., Bodunde J.G., Responses of ”Sunrise Solo” pawpaw, okra and cucumber components of pawpaw based cropping system to time of intercropping, Sci. Hortic. 139 (2012) 71–78. [CrossRef] [Google Scholar]
  167. Ikeorgu J.E., Some micro environmental changes under cassava – maize intercropsgrown with okra and egusi. Ph.D. Thesis, Univ. of Ibadan, Nigeria, 1984. [Google Scholar]
  168. Ossom E.M., Effects of cucumber (Cucumber sativus L.) management methods on weed infestation and soil temperature in Swaziland, Trop. Agric. (Trinidad) 80 (2003) 205–214. [Google Scholar]
  169. Risser P.G., Agro-ecosystems: Structure, Analysis and Modelling, John Willey & Sons, 1986, pp. 60–81. [Google Scholar]
  170. Willey R.W., Intercropping–Its importance and research needs. Part 1. Competition and yield advantages, Field Crop Abstracts 32 (1979) 1–10. [Google Scholar]
  171. Willey R.W., Intercropping–Its importance and research needs. Part 2. Agronomy and Research Approaches, Field Crop Abstracts 32 (1979) 73–85. [Google Scholar]
  172. Mead R., Willey R.W., The concept of land equivalent ratio and advantages in yields from intercropping, Experimental Agriculture 16 (1980) 217–228. [CrossRef] [Google Scholar]
  173. McGilchrist C.A., Analysis of competition experiments, Biometrics 21 (1965) 975–985. [CrossRef] [Google Scholar]
  174. Prasad K., Srivastava R.C., Pigeon pea (Cajanus cajan) and soyabean (Glycine max) intercropping system under rainfed situation, Ind. J. Agric. Sci. 61 (1991) 243–246. [Google Scholar]
  175. Hiebsch C.K., McCollum R.E., Area- × -Time Equivalency Ratio: A Method of Evaluating the Productivity of Intercrops, Agron. J. 79 (1987) 15–22. [CrossRef] [Google Scholar]
  176. Adetiloye, P.O., Ezedinma F.O.C., Okigbo B.N., A land equivalent coefficient (LEC) concept for the evaluation of competitive and productive interactions in simple to complex crop mixtures (Intercropping). Ecol. Model. 19 (1983) 27–39. [CrossRef] [Google Scholar]
  177. Balasubramanian V., Sekayange L., Area harvests equivalency ratio for measuring efficiency in multi-season intercropping, Agron. J. 82 (1990) 519–522. [CrossRef] [Google Scholar]
  178. Adetiloye P.O., Adekunle A.A., Concept of monetary equivalent ratio and its usefulness in the evaluation of intercropping advantages, Tropical Agriculture (Trinidad) 66 (1989) 337–341. [Google Scholar]
  179. Trenbath B.R., Models and interpretation of mixture experiments, in: Wilson J.R. (Ed.), Plant relations in pastures, CSIRO, East Melbourne, Australia, 1978, pp. 145–162. [Google Scholar]
  180. Olasantan F.O., Effects of preceding maize (Zea mays) and cowpea (Vigna unguiculata) in sole cropping and intercropping on growth, yield and nitrogen requirement of okra (Abelmoschus esculentus), J. Agric. Sci. (Camb.) 131 (1998) 293–298. [CrossRef] [Google Scholar]
  181. Jolliffe P.A., The replacement series, J. Ecol. 88 (2000) 371–385. [CrossRef] [Google Scholar]
  182. Willey R.W., Osiru D.S.O., Studies on mixtures of maize and beans (Phaseolus vulgaris) with particular reference to plant population, J. Agric. Sci. (Camb.) 79 (1972) 519–529. [CrossRef] [Google Scholar]
  183. Mead R., Riley J., A review of statistical ideas relevant to intercropping research, J. R. Stat. Soc. A 144 (1981) 462–509. [CrossRef] [Google Scholar]
  184. De Wit C.T., van den Bergh J.P., Competition between herbage plants, Netherlands J. Agric. Sci. 13 (1965) 212–221. [Google Scholar]
  185. Hauggaard-Nielsen H., Ambus P., Jensen E.S., The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley, Nutr. Cycl. Agroecosys. 65 (2003) 289–300. [CrossRef] [Google Scholar]
  186. John S.A., Mini C., Biological efficiency of intercropping in okra (Abelmoschus esculentus (L.) Moench), J. Trop. Agric. 43 (2005) 33–36. [Google Scholar]
  187. Olaniyan A.A., Fagbayide J.A., Oladapo M.O., Amih C.A., Productivity of Cleopatra mandarin rootstock seedlings intercropped with cucumber, Asian J. Plant Sci. 5 (2006) 534–536. [CrossRef] [Google Scholar]
  188. Mousa M.A.A., Mohamed M.F., Dokashi M.H., Elnobi E.-E.F.E., Intra-row intercropping of cowpea and cucumber with okra as influenced by planting date of secondary crops, Ass. Univ. Bull. Environ. Res. 10 (2007) 13–33. [Google Scholar]
  189. Ajayi E.O., Okeleye K.A., Olowe V.I.O., Okonji C.J., Effect of time of intercropping melon with rice on growth and yield of component crops, in: Proceedings of the 27th Annual Conference of the Horticultural Society of Nigeria; held in 2009, October 11th to 16th, at the Bayero University, Kano, Nigeria, 2009, pp. 371–378. [Google Scholar]
  190. Olubode O.O., Component interactions and nutrient dynamics in pawpaw/cucumber mixtures in a pawpaw based cropping system, Nig. J. Hortic. Sci. 17 (2011) 33–44. [Google Scholar]
  191. Fukai S., Trenbath B.R., Processes determining intercrop productivity and yields of component crops, Field Crops Res. 34 (1993) 239–472. [CrossRef] [Google Scholar]
  192. Olubode O.O., Influence of seasonal variations on components of pawpaw / okra mixtures in a pawpaw based cropping system, Biological Agriculture & Horticulture 28 (2012) 1–15. [CrossRef] [Google Scholar]
  193. Akinyemi S.O.S., Makinde J.O., Aiyelaagbe I.O.O., Tairu F.M., Falohun O.O., Growth and yield response of ‘Sunrise Solo’ pawpaw in weed management strategies, Biol. Agric. Hortic. 23 (2006) 383–392. [CrossRef] [Google Scholar]
  194. Olasantan F.O., Effect of population density and sowing date of pumpkin on soil hydrothermal regime, weed control and crop growth in a yam pumpkin intercrop, Exp. Agric. 43 (2007) 365–380. [CrossRef] [Google Scholar]
  195. Usoroh N.J., Weed control and strategies in fruits and vegetables production in Nigeria. NIHORT Technical Bulletin No. 4, 1989. [Google Scholar]
  196. Nadagouder B.S., Mutanal S.M., Hiremath G.K., Agro-forestry for the sustainable benefit of the people, upgradation of environment and forest, Malays For. 57 (1994) 147–159. [Google Scholar]
  197. Ler D.S., Arbieet S., O nkar S., Singh M.P., Agri-horti-intercropping system to find out suitable crop sequence in the pawpaw plantation for higher productivity, Environ. Ecol. 16 (1998) 441–445. [Google Scholar]
  198. Sullivan P., Intercropping principles and production practices: Appropriate technology transfer for rural areas (ATTRA), Fayetteville (AR): USDA Rural Business, 2001. [Google Scholar]
  199. Olasantan F.O., Lucas E.S.C., Intercropping maize with crops of different canopy heights and similar or different maturities using different spatial arrangements, J. Agric. Sci. Technol. 1 (1992) 13–15. [Google Scholar]
  200. Palaniappan S.P.C., Cropping systems in the tropics, Principles and management, New Delhi (India): Willey Eastern, 1985. [Google Scholar]
  201. Olasantan F.O., Effects of season and cassava /okra intercropping on okra production in south western Nigeria, Nig. J. Hort. Sci. 8 (2003) 88–94. [Google Scholar]
  202. Odeyemi O.M.,. Influence of organic and conventional production system on the growth, yield and post-harvest characteristics of pawpaw (Carica papaya L.), Ph.D. Thesis, Federal University of Agriculture, Abeokuta, 2013. [Google Scholar]
  203. Medina De La Cruz J., Gutiérrez G.V., García H.S., Pawpaw: Post-harvest operation: AGSI/FAO, in: Mejía M., Parrucci E. (Eds.), 1999, http://www.fao.org/inpho/ [Google Scholar]
  204. Kitinoja L., Kader A.A., Small scale post-harvest handling practices. A manual for horticultural crops, 3rd Ed., Post-Harvest Horticultural Series No. 8, 1995. [Google Scholar]
  205. Liu F.W., Post-harvest handling in Asia 2, National Taiwan University, Department of Horticulture, Horticultural Crops, 1999. [Google Scholar]
  206. Thompson A.K., Lee G.R., Factors affecting the storage behaviour of pawpaw fruit, J. Hort. Sci. 46 (1971) 511–516. [Google Scholar]
  207. Chen N.M., Paull R.E., Development and prevention of chilling injury in pawpaw fruit, J. Amer. Soc. Hort. Sci. 111 (1986) 639–643. [Google Scholar]
  208. Thangaraj T., An insight into the postharvest handling and storage of pawpaw (Carica papaya L), in: Kumar N., Soorianathasundaram K., Jeyakumar P. (Eds.), Proceedings of the 2nd International Symposium on pawpaw. Acta Hortic. 851 (2010) 497–504. [Google Scholar]
  209. Morton J., Fruits of warm climates; Pawpaw. Miami, FL. 1987, pp. 336–346. [Google Scholar]
  210. Nwinyi O.C., Abikoye B.A., Antifungal effects of pawpaw seed extracts and papain on postharvest Carica papaya L. fruit rot, Afr. J. Agric. Res. 5 (2010) 1531–1535. [Google Scholar]
  211. Brishti F.H., Misir, J., Sarker A., Effect of biopreservatives on storage life of papaya (Carica papaya L.), Int. J. Food Studies IJFS 2 (2013) 126–136. [CrossRef] [Google Scholar]
  212. Oniha M.I., Egwari L.O., Ogunbunmi I., De N., Field and post-harvest requirements for optimizing Carica papaya L fruit yields, in: International Conference on African Development Issues (CU-ICADI) 2015: Biotechnology and Bioinformatics Track, 2015, pp. 6–8. [Google Scholar]
  213. Martins D.M.S., Blum L.E.B., Sena M.C., Dutra J.B., Freitas L.F., Lopes L.F., et al., Effect of hot water treatment on the control of papaya (Carica papaya L.) postharvest diseases, Acta Horticult. 864 (2010) 181–185. [CrossRef] [Google Scholar]
  214. Kakaew P.Nimitheathai H., Srilaong V., Kanlayanarat S., Effects of CaCl2 dips and heat treatments on quality and shelf-life of shredded green papaya, Acta Hortic. 746 (2007) 335–342. [CrossRef] [Google Scholar]
  215. Eryani-Raqeeb A.A., Mabmus T.M.M., Omar S.R.S., Zaki A.R.M., Eryani A.R.A., Effect of calcium and chitosan treatments on controlling anthracnose and postharvest quality of papaya (Carica papaya L.), Int. J. Agric. Res. 4 (2009) 53–68. [CrossRef] [Google Scholar]
  216. Tsado E.K., Aghotor P., Effect of pretransport cold water treatment on postharvest quality of pawpaw fruit, Journal of Biology, Agric. Health Care 2 (2012) 10. [Google Scholar]
  217. FAO, Food loss prevention in perishable crops, FAO Agricultural Services Bulletin No. 43, FAO/UNEP, Rome, Italy, 1983, pp. 1–7. [Google Scholar]
  218. Narayanasamy P., Post-harvest pathogens and disease management, John Wiley & Sons, Inc, Hoboken, New Jersey, 2006. [Google Scholar]
  219. Mehrotra R.S., Aggarwal A., Plant pathology, Tata McGraw-Hill Publishing Company, New Delhi, 2003. [Google Scholar]
  220. Akamine E.K., Goo T., Effects of controlled atmosphere storage of fresh papaya (Carica papaya, L. var. Solo) with special reference to shelf-life extension of fumigated fruit, Hawaii Ag. Sta. Res. (1969) No. 144. [Google Scholar]
  221. Zhou L., Paull R.E., Chen N.J., Papaya: Postharvest quality-maintenance guidelines, Cooperative Extension Service/CTAHR, University of Hawaii, Mânoa, Honolulu, Hawaii 96822, 2014, 6p. [Google Scholar]
  222. Hatton T.T., Reeder W.F., Controlled atmosphere storage of papaya, Proc. Trop. Reg. Am. Soc. Hort. Sci. 13 (1969) 251–256. [Google Scholar]
  223. Akamine E.K., Effects of carbon dioxide on quality and shelf-life of papaya, Hawaii Ag. Exp. Sta. Tech. Progr. Rep. (1959) No. 120. [Google Scholar]
  224. Alvarez A.M., Improved marketability of fresh papaya by shipment in hypobaric containers, HortScience 15 (1980) 517–518. [Google Scholar]
  225. Babarinsa F.A., Nwangwa S.C., Construction and assessment of two evaporative coolers for storage of fruits and vegetables, Report of the Nigerian Stored Products research Institute 1986, Technical Report 3 (1986) 35–55. [Google Scholar]
  226. Basediya A.L., Samuel D.V.K., Beera V., Evaporative cooling system for storage of fruits and vegetables - a review, J. Food Sci. Technol. 50 (2013) 429–442. [CrossRef] [PubMed] [Google Scholar]
  227. Practical Action, Burton Hall, Bourton-on-Dunamore, Warwikshire, UK, 2012, www.practical.action.org. [Google Scholar]
  228. Babatola L.A., Olaniyi J.O., Effects of weeding frequency on the yield and shelf-life performance of tomato (Lycopersicon lycopersicum (L.) Mill.), Int. J. Appl. Agric. Apic. Res. 4 (1&2) (2007) 42–49. [Google Scholar]
  229. Okunade S.O., Ibrahim M.H., Assessment of the evaporative cooling system (ECS) for storage of Irish potato, Solanum tuberosum L. PAT 7 (2011) 74–83. [Google Scholar]
  230. Odetayo T.D., Okelana M.A.O., Olubode O.O., Influence of manure rates and harvest stages performances and quality profile of Corchorus olitorious in different storage media, J. Organic Agric. Environ. (JOAEN) 1 (2013) 13–21. [Google Scholar]
  231. Sunmonu M.O., Jimoh M., Effect of cooling structure on the weight and nutritional parameters of Anjou pears (Pyrus Communis), Ann. Food Sci. Technol. 16 (2015) 359–365. [Google Scholar]
  232. Muhammad R.H., Bamisheyi E., Olayemi F.F., The effect of stage of ripening on the shelf life of tomatoes (Lycopersicon esculentum) stored in the evaporative cooling system (E.C.S). J. Dairying, Foods & H.S. 30 (2011) 299–301. [Google Scholar]