Free Access
Volume 71, Number 6, November-December 2016
Page(s) 363 - 371
Published online 21 October 2016
  1. Damm U., Cannon P.F., Woudenberg J.H.C., Crous P.W., The Colletotrichum acutatum species complex, Stud. Mycol. (2012) 37–113. [Google Scholar]
  2. Van Dyk J.S., Pletschke B., Review on the enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment, Chemosphere 83 (2011) 291–307. [CrossRef] [Google Scholar]
  3. Ibra-Medina V.A., Ferrera-Carrato R., Alarcon A., Lara-Hernandez M.E., Valdez-Cerrasco J.M., Isolation and screening of Trichoderma strains antagonistic to Sclerotinia sclerotiorum (Lib) de Bary and Sclerotinia minor Jagger. Revista Mexicana de Micologia, 31 (2010) 53–63. [Google Scholar]
  4. Kang H., Park Y., Go S., Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid, Microbiol. Res. 158 (2003) 321–326. [CrossRef] [PubMed] [Google Scholar]
  5. Bracey D., Holyoak C.D., Coote P.J., Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition depended on reduce intracellular pH? J. Appl. Microbiol. 85 (1998) 1056–1066. [CrossRef] [PubMed] [Google Scholar]
  6. Krebs H.A., Wiggins D., Sole S., Bedoya F., Studies on the mechanism of the antifungal action of benzoate, Biochem. J. 214 (1983) 657–663. [CrossRef] [PubMed] [Google Scholar]
  7. Palmer C.L., Horst R.K., Langhans R.W., Use of bicarbonate to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis. 81 (1997) 1432–1438. [CrossRef] [Google Scholar]
  8. Ordonez-Valencia C., Alarcon A., Ferrera-Cerrato R., Hernandez-Cuevas L.V., In vitro antifungal effects of potassium bicarbonate on Trichoderma sp and Sclerotinia sclerotiorum, Mycoscience 50 (2009) 380–387. [CrossRef] [Google Scholar]
  9. Ortega-Aguilar B.L., Alarcon A., Cerrato-Ferreta R., Effect of potassium bicarbonate on fungal growth and sclerotia of Sclerotium cepivorum and its interaction with Trichoderma, Revista Mexicana de Micologia 33 (2011) 53–61. [Google Scholar]
  10. Slatnar A., Stampar F., Veberic R., Influence of bicarbonate salts, used against apple scab, on selected primary and secondary metabolites in apple fruit and leaves, Sci. Hortic. 143 (2012) 197–204. [CrossRef] [Google Scholar]
  11. Smith B.J., Black L.L., Greenhouse efficacy of fungicides for control of anthracnose crown rot of strawberry, in: Adam, D., James, J.L. (Eds.), The Strawberry into the 21st Century, Timber Press, Portland, OR, 1991, pp. 221–226. [Google Scholar]
  12. Gubler W.D., Gunnell P.S., Welch N.C., Buchner R., Strawberry diseases and control, Annual report of strawberry research california strawberry advisory Board, 1988, pp. 12–36. [Google Scholar]
  13. Freeman S., Nizani Y., Dotan S., Even S., Sando T., Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse and field conditions, Plant Dis. 81 (1997) 749–752. [CrossRef] [Google Scholar]
  14. De los Santos G. de P.B., Romero M.f., Occurrence of Colletotrichum acutatum, causal organism of strawberry anthracnose in southwestern Spain. Plant Dis. 83 (1999) 301. [CrossRef] [Google Scholar]
  15. Weber N., Schmitzer V., Jakopic J., Mikulic-Petkovsek M., Stampar F., Koron D., Veberic R., Influence of Colletotrichum simmondsii R.G. Shives Y.P. Tan infection on selected primary and secondary metabolites in strawberry (Fragaria × ananassa Duch.) fruit and runners, Europ. J. Plant Pathol. 136 (2013) 281–290. [CrossRef] [Google Scholar]
  16. Ruiz J.M., Garcia P.C., Rivero R.M., Romero L., Response of phenolic metabolism to the application of carbendazim plus boron in tobacco, Physiol. Plant. 106 (1999) 151–157. [CrossRef] [Google Scholar]
  17. Osbourn A.E., Preformed antimicrobial compounds and plant defense against fungal attack, Plant Cell 8 (1996) 1821–1831. [CrossRef] [PubMed] [Google Scholar]
  18. Treutter D., Feucht W., Accumulation of plavan-3-ols in fungus infected leaves of Rosaceae, Z. Pflanzenk. Pflanzen. 97 (1990) 634–641. [Google Scholar]
  19. Aaby K., Mazur, S., Nes, A., Skrede, G., Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening, Food Chem. 132 (2012) 86–97. [CrossRef] [PubMed] [Google Scholar]
  20. Kajdžanoska M., Petreska J., Stefova M., Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries, J. Agric. Food Chem. 59 (2011) 5272–5278. [CrossRef] [PubMed] [Google Scholar]
  21. Mikulic-Petkovsek M., Schmitzer V., Slatnar A., Veberic R., Munda A., Koron D., Stampar F., Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection, J. Agric. Food Chem. 61 (2013) 5987–5995. [CrossRef] [PubMed] [Google Scholar]
  22. Kamilova F., Kravchenko L.V., Shaposhnikov A.I., Makarova N., Lugtenberg, B., Effects of the tomato pathogen Fusarium oxysporum f. sp radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate, Mol. Plant-Microbe Interact. 19 (2006) 1121–1126. [CrossRef] [Google Scholar]
  23. Prusky D., McEvoy J.L., Leverentz B., Conway W.S., Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence, Mol. Plant-Microbe Interact. 14 (2001) 1105–1113. [CrossRef] [Google Scholar]
  24. Clifford M.N., Scalbert A., Ellagitannins - nature, occurrence and dietary burden, J. Sci. Food Agric. 80 (2000) 1118–1125. [CrossRef] [Google Scholar]
  25. Zhou L.G., Li D., Jiang W.B., Qin Z.Z., Zhao S., Qiu M.H., Wu J.Y. Two ellagic acid glycosides from Gleditsia sinensis Lam. With antifungal activity on Magnaporthe grisea, Nat. Prod. Res. 21 (2007) 303–309. [CrossRef] [PubMed] [Google Scholar]
  26. Fallik E., Grinberg S., Ziv O., Potassium bicarbonate reduces postharvest decay development on bell papper fruits, J. Hort. Sci. Biotechnol. 72 (1997) 35–41. [CrossRef] [Google Scholar]
  27. Robards K., Prenzler P.D., Trucker G., Swatsitang P., Glover W., Phenolic compounds and their role in oxidative processes in fruits, Food Chem. 66 (1999) 401–436. [CrossRef] [Google Scholar]
  28. Dixon R.A., Paiva N.L., Stress-induced phenylpropanoid metabolism, Plant Cell 7 (1995) 1085–1097. [CrossRef] [PubMed] [Google Scholar]
  29. Rusjan D., Halbwirth H., Stich K., Mikulic-Petkovsek M., Veberic R., Biochemical response of grapevine variety ‘Chardonay′ (Vitis vinifera L.) to infection with grapevine yellows (Bois noir). Eur. J. Plant Pathol. 134 (2012) 231–237. [CrossRef] [Google Scholar]
  30. Mikulic-Petkovsek M., Stampar F., Veberic R., Accumulation of phenolic compounds in apple in response to infection by the scab pathogen, Venturia inaequalis, Physiol. Mol. Plant Pathol. 74 (2009) 60–67. [CrossRef] [Google Scholar]
  31. Sammi S., Masud T., Effect of different packaging system on the quality of tomato (Lycopersicum esculentum var. ‘Rio Grande’) fruits during storage, Int. J. Food Sci. Technol. 44 (2009) 918–926. [CrossRef] [Google Scholar]
  32. Hunsche M., Brackmann A., Ernani P.R., Effect of potassium fertilization on the postharvest quality of ‘Fuji‘ apples, Pesqui. Agropecu. Bras. 38 (2003) 489–496. [CrossRef] [Google Scholar]