Free Access
Issue
Fruits
Volume 69, Number 2, March-April 2014
Page(s) 167 - 178
DOI https://doi.org/10.1051/fruits/2014004
Published online 04 April 2014
  1. Zhang L., Li J., Hogan S., Chung H., Welbaum G.E., Zhou K., Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition, Food Chem. 119 (2010) 592–599. [CrossRef] [Google Scholar]
  2. Roussos P.A., Sefferou V., Denaxa N.-K., Tsantili E., Stathis V., Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load, Sci. Hortic. 129 (2011) 472–478. [CrossRef] [Google Scholar]
  3. Caillet S., Côté J., Doyon G., Sylvain J.-F., Lacroix M., Antioxidant and antiradical properties of cranberry juice and extracts, Food Res. Int. 44 (2011) 1408–1413. [CrossRef] [Google Scholar]
  4. Valcheva-Kuzmanova S., Borisova P., Galunska B., Krasnaliev I., Belcheva A., Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats, Exp. Toxicol. Pathol. 56 (2004) 195–201. [CrossRef] [PubMed] [Google Scholar]
  5. Yurt B., Celik I., Hepatoprotective effect and antioxidant role of sun, sulphited-dried apricot (Prunus armeniaca L.) and its kernel against ethanol-induced oxidative stress in rats, Food Chem. Toxicol. 49 (2011) 508–513. [CrossRef] [PubMed] [Google Scholar]
  6. Valcheva-Kuzmanova S., Kuzmanov K., Mihova V., Krasnaliev I., Borisova P., Belcheva A., Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet, Plant Food. Hum. Nutr. 62 (2007) 19–24. [CrossRef] [Google Scholar]
  7. Jurgoński A., Juśkiewicz J., Zduńczyk Z., Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia, Plant Foods Hum. Nutr. 63 (2008) 176–182. [CrossRef] [PubMed] [Google Scholar]
  8. Bermùdez-Soto M.J., Larrosa M., Garcia-Cantalejo J., Espin J.C., Tomás-Barberan F.A., Garcia-Conesa M.T., Transcriptional changes in human Caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice, Genes Nutr. 2 (2007) 111–113. [CrossRef] [PubMed] [Google Scholar]
  9. Valcheva-Kuzmanova S., Marazova K., Krasnaliev I., Galunska B., Borisova P., Belcheva A., Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats, Exp. Toxicol. Pathol. 56 (2005) 385–392. [CrossRef] [PubMed] [Google Scholar]
  10. Yao Y., Vieira A., Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity, Neurotoxicology 28 (2007) 93–100. [CrossRef] [PubMed] [Google Scholar]
  11. Vu K.D., Carlettini H., Bouvet J., Côté J., Doyon G., Sylvain J.-F., Lacroix M., Effect of different cranberry extracts and juices during cranberry juice processing on the antiproliferative activity against two colon cancer cell lines, Food Chem. 132 (2012) 959–967. [CrossRef] [Google Scholar]
  12. Caillet S., Lorenzo G., Côté J., Doyon G., Sylvain J.-F., Lacroix M., Cancer chemopreventive effect of fractions from cranberry products, Food Res. Int. 45 (2012) 320–330. [CrossRef] [Google Scholar]
  13. Šarić A., Sobočanec S., Balog T., Kušić B., Šverko V., Dragović-Uzelac V., Levaj B., Čosič Z., Mačak Šafranko Ž., Marotti T., Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus cerasus cv. Maraska), Plant Foods Hum. Nutr. 64 (2009) 231–237. [CrossRef] [PubMed] [Google Scholar]
  14. Castilho Maro L.A., Pio R., Santos Guedes M.N., Patto de Abreu C.M., Nogueira Curi P., Bioactive compounds, antioxidant activity and mineral composition of fruits of raspberry cultivars grown in subtropical areas in Brazil, Fruits 68 (2013) 209–217. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Mejia-Meza E.I., Yáňez J.A., Remsberg C.M., Takemoto J.K., Davies N.M., Rasco B., Clary C., Effect of dehydration on raspberries: polyphenol and anthocyanin retention, antioxidant capacity, and antiadipogenic activity, J. Food Sci. 75 (2010) H5–H12. [CrossRef] [PubMed] [Google Scholar]
  16. Bowen-Forbes C.S., Zhang Y., Nair M.G., Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits, J. Food Compos. Anal. 23 (2010) 554–560. [Google Scholar]
  17. Juranic Z., Zizak Z., Tasic S., Petrovic S., Nidzovic S., Leposavic A., Stanojkovic T., Antiproliferative action of water extracts of seeds or pulp of five different raspberry cultivars, Food Chem. 93 (2005) 39–45. [CrossRef] [Google Scholar]
  18. Jakopic J., Slatnar A., Stampar F., Veberic R., Simoncic A., Analysis of selected primary metabolites and phenolic profile of ‘Golden Delicious’ apples from four production systems, Fruits 67 (2012) 377–386. [CrossRef] [EDP Sciences] [Google Scholar]
  19. Young J., Wahle K.W.J., Boyle S.P., Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: Surrogates for neurological damage in vivo, Prostag. Leukotr. Ess. 78 (2008) 145–159. [CrossRef] [Google Scholar]
  20. Itagaki S., Kurokawa T., Nakata C., Saito Y., Oikawa S., Kobayashi M., Hirano T., Esiki K., In vitro and in vivo antioxidant properties of ferulic acid, A comparative study with other natural oxidation inhibitors, Food Chem. 114 (2009) 466–471. [CrossRef] [Google Scholar]
  21. Fernández M.A., Sáenz M.T., García M.D., Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens, J. Pharm. Pharmacol. 50 (1998) 1183–1186. [CrossRef] [PubMed] [Google Scholar]
  22. Van der Logt E.M., Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens, Carcinogenesis 24 (2003) 1651–1656. [CrossRef] [PubMed] [Google Scholar]
  23. Yasuda T., Inhibitory effects of urinary metabolites on platelet aggregation after orally administering Shimotsu-To, a traditional Chinese medicine, to rats, J. Pharm. Pharmacol. 55 (2003) 239–244. [CrossRef] [PubMed] [Google Scholar]
  24. Balasubashini M.S., Rukkumani R., Viswanathan P., Menon, V.P., Ferulic acid alleviates lipid peroxidation in diabetic rats, Phytother. Res. 18 (2004) 310–314. [CrossRef] [PubMed] [Google Scholar]
  25. Jung E.H., Kim S.R., Hwang I.K., Ha T.Y., Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice, J. Agric. Food Chem. 55 (2007) 9800–9804. [CrossRef] [PubMed] [Google Scholar]
  26. Suzuki A., Yamamoto, M., Jokura, H., Fujii, A., Tokimitsu, I., Hase, T., Saito, I., Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats, Am. J. Hypertens. 20 (2007) 508–513. [CrossRef] [PubMed] [Google Scholar]
  27. Adisakwattana S., Moonsan P., Yibchok-Anun S., Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo, J. Agric. Food Chem. 56 (2008) 7838–7844. [CrossRef] [PubMed] [Google Scholar]
  28. Fetoni A.R., Mancuso C., Eramo S.L.M., Ralli M., Piacentini R., Barone E., Paludetti G., Troiani D., In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig, Neuroscience 169 (2010) 1575–1588. [CrossRef] [PubMed] [Google Scholar]
  29. Duchnowicz P., Broncel M., Podsędek A., Koter-Michalak M., Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study), Eur. J. Nutr. 51 (4) (2012) 435–443. [CrossRef] [PubMed] [Google Scholar]
  30. Bolling B.W., Ji L.L., Lee C.-H., Parkin K.L., Dietary supplementation of ferulic acid and ferulic acid ethyl ester induces quinine reductase and gluthatione-S-transferase in rats, Food Chem. 124 (2011) 1–6. [CrossRef] [Google Scholar]
  31. Mori H., Kawabata K., Yoshimi N., Tanaka T., Murakami T., Okada T., Murai H., Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis, Anticancer Res. 19 (5A) (1999) 3775–3778. [PubMed] [Google Scholar]
  32. Liu C.L., Wang J.M., Chu C.Y., In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity, Food Chem. Toxicol. 40 (2002) 635–641. [CrossRef] [PubMed] [Google Scholar]
  33. Srinivasan M., Sudheer A.R., Pillai K.R., Kumar P.R., Sudhakaran P.R., Menon V.P., Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes, Toxicology 228 (2006) 249–258. [Google Scholar]
  34. Wenk G.L., McGann-Gramling K., Hauss-Wegrzyniak B., Ronchetti D., Maucci R., Rosi S., Gasparini L., Ongini E., Attenuation of chronic neuroinflammation by a nitric oxide-releasing derivative of the antioxidant ferulic acid, J. Neurochem. 89 (2004) 484–493. [CrossRef] [PubMed] [Google Scholar]
  35. Cho J.Y., Kim H.S., Kim D.H., Yan J.J., Suh H.W., Song D.K., Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice, Prog. Neuro- Psychopha. 29 (2005) 901–907. [CrossRef] [Google Scholar]
  36. Karakida F., Ikeya Y., Tsunakawa M., Yamaguchi T., Ikarashi Y., Takeda S., Aburada M., Cerebral protective and cognition-improving effects of sinapic acid in rodents, Biol. Pharm. Bull. 30 (2007) 514–519. [CrossRef] [PubMed] [Google Scholar]
  37. Cheng C.Y., Su S.Y., Tang N.Y., Ho T.Y., Chiang S.Y., Hsieh C.L., Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting of ICAM-1 mRNA expression in rats, Brain Res. 13 (2008) 136–150. [CrossRef] [PubMed] [Google Scholar]
  38. Yabe T., Hirahara H., Harada N., Ito N., Nagai T., Sanagi T., Yamada H., Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo, Neuroscience 165 (2010) 515–524. [CrossRef] [PubMed] [Google Scholar]
  39. Khanal R.C., Howard L.R., Prior R.L., Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins, Food Res. Int. 43 (2010) 1464–1469. [CrossRef] [Google Scholar]
  40. Côté J., Caillet S., Doyon G., Dussault D., Salmieri S., Lorenzo G., Sylvain J.-F., Lacroix M., Effects of juice processing on cranberry antioxidant properties, Food Res. Int. 44 (2011) 2907–2914. [CrossRef] [Google Scholar]
  41. Rababah T.M., Al-Mahasneh M.A., Kilani I., Yang W., Alhamad M.N., Ereifej K., Al-u’datt M., Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruit, J. Sci. Food Agric. 91 (2011) 1096–1102. [CrossRef] [PubMed] [Google Scholar]
  42. Arancibia-Avila P., Namiestnik J., Toledo F., Werner E., Martinez-Alaya A.L., Rocha-Guzmán N.E., Gallegos-Infante J.A., Gorinstein S., The influence of different time durations of thermal processing on berries quality, Food Control 26 (2012) 587–593. [CrossRef] [Google Scholar]
  43. Spanos G.A., Wrolstad R.E., Influence of variety, maturity, processing, and storage on the phenolic composition of pear juice, J. Agric. Food Chem. 38 (1990) 817–824. [CrossRef] [Google Scholar]
  44. Rommel A., Wrolstad R.E., Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental factors, J. Agric. Food Chem. 41 (1993) 1951–1960. [CrossRef] [Google Scholar]
  45. Amakura Y., Umino Y., Tsuji S., Tonogai Y., Influence of jam processing on the radical scavenging activity and phenolic content in berries, J. Agric. Food Chem. 48 (2000) 6292–6297. [CrossRef] [PubMed] [Google Scholar]
  46. Zafrilla P., Ferreres F., Tomás-Barberán F.A., Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams, J. Agric. Food Chem. 49 (2001) 3651–3655. [CrossRef] [PubMed] [Google Scholar]
  47. Levaj B., Dragović-Uzelac V., Delonga K., Kovačevič Ganič K., Banovi M., Bursač Kovačevič D., Polyphenols and volatiles in fruits of two sour cherry cultivars, some berry fruits and their jams, Food Technol. Biotechnol. 48 (2010) 538–547. [Google Scholar]
  48. Gil M.I., Tomás-Barberán F.A., Hess-Pierce B., Holcroft D.M., Kader A.A., Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing, J. Agric. Food Chem. 48 (2000) 4581–4589. [Google Scholar]
  49. Häkkinen S.H., Kärenlampi S.O., Mykkänen H.M., Heinonen I.M., Törrönen A.R., Ellagic acid content in berries: Influence of domestic processing and storage, Eur. Food Res. Technol. 212 (2000) 75–80. [CrossRef] [Google Scholar]
  50. Dragovic-Uzelac V., Pospišil J., Levaj B., Delonga K., The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity, Food Chem. 91 (2005) 373–383. [CrossRef] [Google Scholar]
  51. Häkkinen S., Heinonen M., Kärenlampi S., Mykkänen H., Ruuskanen J., Törrönen R., Screening of selected flavonoids and phenolic acids in 19 berries, Food Res. Int. 32 (1999) 345–353. [CrossRef] [Google Scholar]
  52. Qian J.-Y., Liu D., Huang A.-G., The efficiency of flavonoids in polar extracts of Lycium chinense Mill. fruits as free radical scavenger, Food Chem. 87 (2004) 283–288. [CrossRef] [Google Scholar]