Free Access
Volume 71, Number 6, November-December 2016
Page(s) 399 - 405
Published online 11 November 2016
  1. Raffo A., Paoletti F., Antonelli M., Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three seabuckthorn (Hippophae rhamnoides L.) cultivars, Eur. Food Res. Technol. 219 (2004) 360–368. [CrossRef] [Google Scholar]
  2. Tiitinen K.M., et al., Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides L.) varieties. J. Agric. Food Chem. 54 (2006) 2508–2513. [CrossRef] [PubMed] [Google Scholar]
  3. Ma X., et al., Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chem. 200 (2016) 189–198. [CrossRef] [PubMed] [Google Scholar]
  4. Yang W., et al., Proanthocyanidins in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins with Special Reference to Influence of Genetic Background and Growth Location, J. Agric. Food Chem. 64 (2016) 1274–1282. [CrossRef] [PubMed] [Google Scholar]
  5. Zheng J., Kallio H., Yang B., Sea buckthorn (Hippophaë rhamnoides ssp. rhamnoides) berries in Nordic environment: Compositional response to latitude and weather conditions, J. Agric. Food Chem, (2016), DOI: 10.1021/acs.jafc.1026b00682. [Google Scholar]
  6. Andersson S.C., et al., Carotenoids in sea buckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker, J. Agric. Food Chem. 57 (2009) 250–258. [CrossRef] [PubMed] [Google Scholar]
  7. Andersson S.C., et al., Tocopherols and tocotrienols in sea buckthorn (Hippophae rhamnoides L.) berries during ripening, J. Agric. Food Chem. 56 (2008) 6701–6706. [CrossRef] [PubMed] [Google Scholar]
  8. Beveridge T., et al., Sea buckthorn products: manufacture and composition, J. Agric. Food Chem. 47 (1999) 3480–3488. [CrossRef] [PubMed] [Google Scholar]
  9. Giuffrida D., et al., Determination of carotenoids and their esters in fruits of sea buckthorn (Hippophae rhamnoides L.) by HPLC-DAD-APCI-MS, Phytochem. Anal. 23 (2012) 267–273. [CrossRef] [PubMed] [Google Scholar]
  10. Kallio H., Yang B., Peippo P., Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries, J. Agric. Food Chem. 50 (2002) 6136–6142. [CrossRef] [PubMed] [Google Scholar]
  11. Pop R.M., et al., Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties, Food Chem. 147 (2014) 1–9. [CrossRef] [PubMed] [Google Scholar]
  12. St.George S.D., Cenkowski S., Influence of harvest time on the quality of oil-based compounds in sea buckthorn (Hippophae rhamnoides L. ssp. sinensis) seed and fruit, J. Agric. Food Chem. 55 (2007) 8054–8061. [CrossRef] [PubMed] [Google Scholar]
  13. Yang B., Kallio H., Composition and physiological effects of sea buckthorn (Hippophae) lipids, Trends Food Sci. Technol. 13 (2002) 160–167. [CrossRef] [Google Scholar]
  14. Yang B., et al., Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: identification and effects of different origins and harvesting times, J. Agric. Food Chem. 49 (2001) 5620–5629. [CrossRef] [PubMed] [Google Scholar]
  15. Vuorinen A.L., et al., Effect of growth environment on the gene expression and lipids related to triacylglycerol biosynthesis in sea buckthorn (Hippophaë rhamnoides) berries, Food Res. Int. 77 (2015) 608–619. [CrossRef] [Google Scholar]
  16. Teleszko M., et al., Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophae rhamnoides L.) berries, J. Agric. Food Chem. 63 (2015) 4120–4129. [CrossRef] [PubMed] [Google Scholar]
  17. Nogala-Kałucka M., et al., Antioxidant synergism and antagonism between tocotrienols, quercetin and rutin in model system, Acta Aliment. 42 (2013) 360–370. [CrossRef] [Google Scholar]
  18. Eitenmiller R., Lee J., Vitamin E: food chemistry, composition, and analysis. Marcel Dekker Inc., New York, 2004. [Google Scholar]
  19. Burton G.W., Vitamin E: molecular and biological function, Proc. Nutr. Soc. 53 (1994) 251–262. [CrossRef] [PubMed] [Google Scholar]
  20. Aggarwal B.B., et al., Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases, Biochem. Pharmacol. 80 (2010) 1613–1631. [Google Scholar]
  21. DellaPenna D., A decade of progress in understanding vitamin E synthesis in plants, J. Plant Physiol. 162 (2005) 729–737. [CrossRef] [PubMed] [Google Scholar]
  22. Górnaś P., Soliven A., Segliòa D., Seed oils recovered from industrial fruit by-products are a rich source of tocopherols and tocotrienols: Rapid separation of α/β/γ/δ homologues by RP-HPLC/FLD, Eur. J. Lipid Sci. Technol. 117 (2015) 773–777. [CrossRef] [Google Scholar]
  23. Górnaś P., Siger A., Simplified sample preparation and rapid detection by RP-HPLC/FLD of tocopherols and tocotrienols in margarines: Preliminary screening of plant fats – potential quality markers, Eur. J. Lipid Sci. Technol. 117 (2015) 1589–1597. [CrossRef] [Google Scholar]
  24. Górnaś P., et al., Factors affecting tocopherol contents in coffee brews: NP-HPLC/FLD, RP-UPLC-ESI/MSn and spectroscopic study, Eur. Food Res. Technol. 238 (2014) 259–264. [CrossRef] [Google Scholar]
  25. Górnaś P., et al., Sea buckthorn (Hippophae rhamnoides L.) leaves as valuable source of lipophilic antioxidants: The effect of harvest time, sex, drying and extraction methods, Ind. Crops Prod. 60 (2014) 1–7. [CrossRef] [Google Scholar]
  26. Górnaś P., et al., Dessert and crab apple seeds as a promising and rich source of all four homologues of tocopherol (α, β, γ and δ), LWT-Food Sci. Technol. 59 (2014) 211–214. [Google Scholar]
  27. Górnaś P., et al., An alternative RP-HPLC method for the separation and determination of tocopherol and tocotrienol homologues as butter authenticity markers: A comparative study between two European countries, Eur. J. Lipid Sci. Technol. 116 (2014) 895–903. [Google Scholar]
  28. Górnaś P., Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: Rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD, Food Chem. 172 (2015) 129–134. [CrossRef] [PubMed] [Google Scholar]
  29. Górnaś P., Pugajeva I., Segliòa D., Seeds recovered from by-products of selected fruit processing as a rich source of tocochromanols: RP-HPLC/FLD and RP-UPLC-ESI/MSn study, Eur. Food Res. Technol. 239 (2014) 519–524. [CrossRef] [Google Scholar]
  30. Górnaś P., et al., Tocochromanols composition in kernels recovered from different apricot varieties: RP-HPLC/FLD and RP-UPLC-ESI/MSn study, Nat. Prod. Res. 29 (2015) 1222–1227. [CrossRef] [PubMed] [Google Scholar]
  31. Górnaś P., et al., New insights regarding tocopherols in Arabica and Robusta species coffee beans: RP-UPLC-ESI/MSn and NP-HPLC/FLD study, J. Food Compos. Anal. 36 (2014) 117–123. [CrossRef] [Google Scholar]
  32. CODEX_STAN_247, General standard for fruit juices and nectars, (2005). [Google Scholar]
  33. Dwiecki K., et al., Spectroscopic studies of D-α-tocopherol concentration-induced transformation in egg phosphatidylcholne vesicles, Cell. Mol. Biol. Lett. 12 (2007) 51–69. [CrossRef] [PubMed] [Google Scholar]