Free Access
Volume 71, Number 6, November-December 2016
Page(s) 407 - 418
Published online 24 November 2016
  1. Bythrow D., Vanilla as a Medicinal Plant, Semin. in Integr. Med. 3 (2005) 129–131. [CrossRef] [Google Scholar]
  2. Gassenmeier K., Riesen B., Magyar B., Commercial quality and analytical parameters of cured vanilla beans (Vanilla planifolia) from different origins from the 2006-2007 crops, Flavour Frag. J. 23 (2008) 194–201. [CrossRef] [Google Scholar]
  3. Soto-Arenas M.A., Dressler R.L., A revision of the Mexican and Central American species of Vanilla plumier ex Miller with a characterization of their ITS region of the nuclear ribosomal DNA, Lankesteriana 9 (2010) 285–354. [Google Scholar]
  4. Hágsater E., Soto-Arenas M.A., Salazar C.G.A., Jiménez M.R., López R.M.A., Dressler R.L., Las orquídeas de México: Orquídeas y gente del Instituto Chinoín. México, D.F., 2005, pp. 38–71. [Google Scholar]
  5. Dunphy P., Bala K., Review: A flavor of vanilla. Aroma, taste and mouthfeel, Perfum. Flavor. 35 (2010) 42–48. [Google Scholar]
  6. Hernández Hernández J., Lubinsky P., Vanilla Production in Mexico, in: Odoux E., Grisoni M. (Eds.), Vanilla: Medicinal and Aromatic Plants - Industrial Profiles, CRC Press/Taylor & Francis, Boca Raton, FL, 2010. [Google Scholar]
  7. BBC MUNDO (2016). [Google Scholar]
  8. Brownell R., Hogan C., May S., Nielsen C., Pennestri C., Roques D., Rosskam S., Todd H., The State of Vanilla: Challenges and Opportunities, Perfum. Flavor. 34 (2009) 20–22. [Google Scholar]
  9. Walton N.J., Mayer M.J., Narbad A., Vanillin, Phytochemistry 63 (2003) 505–515. [CrossRef] [PubMed] [Google Scholar]
  10. Shyamala B.N., Naidu M., Sulochanamma G., Srinivas P., Studies on the antioxidant activities of natural vanilla extract and its constituent compounds through in vitro models, J. Agric. Food Chem., 55 (2007) 7738–7743. [CrossRef] [PubMed] [Google Scholar]
  11. Mourtzinos I., Konteles S., Kalogeropoulos N., Karathanos V.T., Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties, Food Chem. 114 (2009) 791–797. [CrossRef] [Google Scholar]
  12. Palama T.L., Khatib A., Hae C.Y., Payet B., Fock-Bastide I., Verpoorte R., Kodja H., Metabolic changes in different developmental stages of Vanilla planifolia pods, J. Agric. Food Chem. 57 (2009) 7651–7658. [CrossRef] [PubMed] [Google Scholar]
  13. Ramachandra S., Ravishankar G.A., Review: Vanilla Flavor: Production by conventional and biotechnological routes, J. Sci. Food Agric. 80 (2000) 289–304. [CrossRef] [Google Scholar]
  14. Pérez-Silva A., Odoux E., Brat P., Ribeyre F., Rodriguez-Jimenes G., Robles-Olvera V., García A., Günata Z., GC–MS and GC–Olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans, Food Chem. 99 (2006) 728–735. [CrossRef] [Google Scholar]
  15. Dunphy P., Bala K., The quality of cured vanilla beans. Flavor and sensory attributes and mouthfeel, Perfum. Flavor. 36 (2011) 38–50. [Google Scholar]
  16. Brunschwig C., Senger-Emonnot P., Aubanel M.-L., Pierrat A., George G., Rochard S., Raharivelomanana P., Odor-active compounds of Tahitian vanilla flavor, Food Res. Int. 46 (2012) 148–157. [CrossRef] [Google Scholar]
  17. Zhang S., Mueller C., Comparative analysis of volatiles in traditionally cured Bourbon and Ugandan vanilla bean (Vanilla planifolia) extracts, J. Agric. Food Chem. 60 (2012) 10433–10444. [CrossRef] [PubMed] [Google Scholar]
  18. Takahashi M., Inai Y., Miyazawa N., Kurobayashi Y., Fujita A., Key odorants in cured Madagascar vanilla beans (Vanilla planifolia) of differing bean quality, Biosci. Biotechnol. Biochem. 77 (2013) 606–611. [CrossRef] [PubMed] [Google Scholar]
  19. Takahashi M., Inai Y., Miyazawa N., Kurobayashi Y., Fujita A., Identification of the key odorants in Tahitian cured vanilla beans (Vanilla tahitensis) by GC-MS and an aroma extract dilution analysis, Biosci. Biotechnol. Biochem. 77 (2013) 601–605. [CrossRef] [PubMed] [Google Scholar]
  20. Ranadive A.S., Inside look: Chemistry and biochemistry of vanilla flavor, Perfum. Flavor. 31 (2006) 38–44. [Google Scholar]
  21. Van Dyk S., Holford P., Subedi P., Walsh K., Williams M., McGlasson W.B., Determining the harvest maturity of vanilla beans, Sci. Hortic. 168 (2014) 249–257. [CrossRef] [Google Scholar]
  22. Odoux E., Changes in vanillin and glucovanillin concentrations during the various stages of the process traditionally used for curing Vanilla fragrans in Réunion, Fruits 55 (2000) 119–125. [Google Scholar]
  23. Dunphy P., Bala K., Vanilla Curing. The senescent decline of a ripe vanilla bean and the birth of vanillin, Perfum. Flavor. 34 (2009) 34–40. [Google Scholar]
  24. Van Dyk S., McGlasson W.B., Williams M., Gair C., Influence of curing procedures on sensory quality of vanilla beans, Fruits 65 (2010) 387–399. [CrossRef] [EDP Sciences] [Google Scholar]
  25. Sostaric T., Boyce M.C., Spickett E.E., Analysis of the volatile components in vanilla extracts and flavorings by Solid-Phase Microextraction and Gas Chromatography, J. Agric. Food Chem. 48 (2000) 5802–5807. [CrossRef] [PubMed] [Google Scholar]
  26. Sinha A.K., Sharma U.K., Sharma N., A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents, Int. J. Food Sci. Nutr. 59 (2008) 299–326. [CrossRef] [PubMed] [Google Scholar]
  27. Ramaroson-Raonizafinimanana B., Gaydou E.M., Bombarda I., Hydrocarbons from three Vanilla bean species: V. fragrans, V. madagascariensis, and V. tahitensis, J. Agric. Food Chem. 45 (1997) 2542–2545. [CrossRef] [Google Scholar]
  28. Taylor S., Improved determination of vanillin and related phenolic components in vanilla (Vanilla fragrans (Salisb.) Ames) by High-Performance Liquid Chromatography, Flavour Fragr. J. 8 (1993) 281–287. [CrossRef] [Google Scholar]
  29. De Jager L.S., Perfetti G.A., Diachenko G.W., Comparison of Headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products, Food Chem. 107 (2008) 1701–1709. [CrossRef] [Google Scholar]
  30. Galletto W.G., Hoffman P.G., Some benzyl ethers present in the extract of vanilla (Vanilla planifolia), J. Agric. Food Chem. 26 (1978) 195–197. [CrossRef] [Google Scholar]
  31. Bütehorn U., Pyell U., Micellar Electrokinetic Chromatography as a screening method for the analysis of vanilla flavor ings and vanilla extracts, J. Chromatogr. A. 736 (1996) 321–332. [CrossRef] [Google Scholar]
  32. Gassemeier K., Binggeli E., Kirsch T., Otiv S., Modulation of the 13C/12C ratio of vanillin from vanilla beans during curing, Flavour Fragr. J. 28 (2013) 25–29. [CrossRef] [Google Scholar]
  33. Adedeji J., Hartman T.G., Ho C.-T., Flavor characterization of different varieties of vanilla beans, Perfum. Flavor. 18 (1993) 25–33. [Google Scholar]
  34. Gatfield I., Reiß I., Krammer G., Schmidt C.O., Kindel G., Bertram H.-J., Divanillin: Novel taste-active component of fermented vanilla beans, Perfum. Flavor. 31 (2006) 18–20. [Google Scholar]
  35. Hartman T.G., Karmas K., Chen J., Shevade A., Deagro M., Hwang H-I., Determination of vanillin, other phenolic compounds, and flavors in vanilla beans in: Ho C.-T., Lee C.Y., Huang M.-T. (Eds), Phenolic compounds in food and their effects on health I: Analysis, occurrence, and chemistry, ACS Symposium Series 506, Washington, 1992. [Google Scholar]
  36. Klimes I., Lamparsky D., Vanilla volatiles – A comprehensive analysis, Int. Flavours Food Addit. 7 (1976) 272–291. [Google Scholar]
  37. Kanisawa T., Flavor development in vanilla beans, Kouryou. 180 (1993) 113–123. [Google Scholar]
  38. Pérez-Silva A., Günata Z., Lepoutre J-P., Odoux E., New insight on the genesis and fate of odor-active compounds in vanilla beans (Vanilla planifolia G. Jackson) during traditional curing, Food Res. Int. 44 (2011) 2930–2937. [CrossRef] [Google Scholar]
  39. Vidal J.P., Fort J.J., Gaultier P., Richard H., Vanilla aroma extraction by dense carbon dioxide, Sci. Alim. 9 (1989) 89–100. [Google Scholar]
  40. Werkhoff P., Güntert M., Identification of some ester compounds in bourbon vanilla beans, Lebens. Wiss. Technol. 30 (1997) 429–431. [CrossRef] [Google Scholar]
  41. Arthur C.L., Pawliszyn J., Solid Phase Microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145–2148. [CrossRef] [Google Scholar]
  42. Bojko B., Cudjoe E., Gómez-Ríos G.A., Gorynski K., Jiang R., Reyes-Garcés N., Pawliszyn J., SPME – Quo vadis?, Anal. Chim. Acta. 750 (2012) 132–151. [CrossRef] [PubMed] [Google Scholar]
  43. Januszkiewicz J., Sabik H., Azarnia S., Lee B., Optimization of headspace solid-phase microextraction for the analysis of specific flavors in enzyme modified and natural Cheddar cheese using factorial design and response surface methodology, J. Chromatogr. A. 1195 (2008) 16–24. [CrossRef] [PubMed] [Google Scholar]
  44. Jeleń H.H., Majcher M., Dziadas M., Microextraction techniques in the analysis of food flavor compounds. A review, Anal. Chim. Acta. 738 (2012) 13–26. [CrossRef] [PubMed] [Google Scholar]
  45. Pawliszyn J., Lee H.K., Mills G.A., Progress in sample extraction, TrAC, Trends Anal. Chem. 30 (2011) 1699–1701. [CrossRef] [Google Scholar]
  46. Risticevic S., Niri V.H., Vuckovic D., Pawliszyn J., Recent developments in solid-phase microextraction, Anal. Bioanal. Chem. 393 (2009) 781–795. [CrossRef] [PubMed] [Google Scholar]
  47. Ulrich S., Martens J., Solid-Phase Microextraction with Capillary Gas-Liquid Chromatography and nitrogen-phosphorus selective detection for the assay of antidepressant drugs in human plasma, J. Chromatogr. B: Biomed. Sci. Appl. 696 (1997) 217–234. [CrossRef] [Google Scholar]
  48. Hoffman P., Harmon A., Ford P., Zapf M., Weber A., King S., Lentz K., Analytical approaches to vanilla quality and authentication in: Havkin-Frenkel D. (Ed),Vanilla: First International Congress, Carol Stream, IL: Allured Publishing, 2005, pp. 41–49. [Google Scholar]
  49. Calabretti A., Campisi B., Procida G., Vesnaver R., Gabrielli L., Analysis of volatile compounds of Vanilla planifolia essential oil by using headspace solid-phase microextraction (SPME) In: Karloviæ D. (Ed.), Proceedings of the 5th Croatian Congress of Food Technologists, Biotechnologists and Nutritionists, Zagreb, Croatia, 2005, pp. 249–257. [Google Scholar]
  50. Pinho O., Pérès C., Ferreira I.M.P.L.V.O., Solid-Phase Microextraction of volatile compounds in ‘Terrincho’ ewe cheese: Comparison of different fibers, J. Chromatogr. A. 1011 (2003) 1–9. [CrossRef] [PubMed] [Google Scholar]
  51. Marsili R.T., SPME–MS–MVA as an electronic nose for the study of off-flavors in milk, J. Agric. Food Chem. 47 (1999) 648–654. [CrossRef] [PubMed] [Google Scholar]
  52. Pawliszyn J., Solid Phase Microextraction: Theory and practice, Wiley-VCH. New York, 1997. [Google Scholar]
  53. Pérès C., Viallon C., Berdagué J.-L., Solid-Phase Microextraction-Mass Spectrometry: A new approach to the rapid characterization of cheeses, Anal. Chem. 73 (2001) 1030–1036. [CrossRef] [PubMed] [Google Scholar]
  54. Kataoka H., Lord H.L., Pawliszyn J., Applications of Solid-Phase Microextraction in food analysis, J. Chromatogr. A. 880 (2000) 35–62. [CrossRef] [PubMed] [Google Scholar]
  55. Prosen H., Zupančič-Kralj L., Solid-phase microextraction, TrAC, Trends Anal. Chem. 18 (1999) 272–282. [CrossRef] [Google Scholar]
  56. Lorrain B., Ballester J., Thomas-Danguin T., Blanquet J., Meunier J. M., Le Fur Y., Selection of potential impact odorants and sensory validation of their importance in typical Chardonnay wines, J. Agric. Food Chem. 54 (2006) 3973–3981. [CrossRef] [PubMed] [Google Scholar]
  57. Dignum M.J.W., Van Der Heijden R., Kerler J., Winkel C., Verpoorte R., Identification of glucosides in green beans of Vanilla planifolia Andrews and kinetics of vanilla β-glucosidase, Food Chem. 85 (2004) 199–205. [CrossRef] [Google Scholar]
  58. Brunschwig C., Collard F.X., Bianchini J.P., Raharivelomanana P. Evaluation of chemical variability of cured vanilla beans (Vanilla tahitensis and Vanilla planifolia), Nat. Prod. Commun. 4 (2009) 1393–1400. [Google Scholar]
  59. DaCosta N.C., Pantini M., The analysis of volatiles in Tahitian vanilla (Vanilla tahitensis) including novel compounds, Dev. Food Sci. 43 (2006) 161–164. [CrossRef] [Google Scholar]
  60. Brillouet J.M., Odoux E., In vivo kinetics of ßglucosidase towards glucovanillin and related phenolic glucosides in heattreated vanilla pod (Vanilla planifolia, Orchidaceae), Fruits 65 (2010) 8595. [Google Scholar]
  61. Anklam E., Gaglione S., Müller A., Oxidation behaviour of vanillin in dairy products, Food Chem. 60 (1997) 43–51. [CrossRef] [Google Scholar]
  62. Petisca C., Pérez-Palacios T., Farah A., Pinho O., Ferreira I.M.P.L.V.O., Furans and other volatile compounds in ground roasted and espresso coffee using Headspace Solid-Phase Microextraction: Effect of roasting speed, Food Bioprod. Process. 91 (2013) 233–241. [CrossRef] [Google Scholar]
  63. Roberts D.D., Pollien P., Milo C., Solid-Phase Microextraction method development for Headspace analysis of volatile flavor compounds, J. Agric. Food Chem. 48 (2000) 2430–2437. [CrossRef] [PubMed] [Google Scholar]
  64. Wardencki W., Michulec M., Curyło J., A review of theoretical and practical aspects of Solid-Phase Microextraction in food analysis, Int. J. Food Sci. Technol. 39 (2004) 703–717. [CrossRef] [Google Scholar]
  65. Flavornet (2015) [Google Scholar]
  66. Pherobase (2015) [Google Scholar]
  67. Citrus Research and Education Center. (2015) [Google Scholar]